Biblio
Connected cars have received massive attention in Intelligent Transportation System. Many potential services, especially safety-related ones, rely on spatial-temporal messages periodically broadcast by cars. Without a secure authentication algorithm, malicious cars may send out invalid spatial-temporal messages and then deny creating them. Meanwhile, a lot of private information may be disclosed from these spatial-temporal messages. Since cars move on expressways at high speed, any authentication must be performed in real-time to prevent crashes. In this paper, we propose a Fast and Anonymous Spatial-Temporal Trust (FastTrust) mechanism to ensure these properties. In contrast to most authentication protocols which rely on fixed infrastructures, FastTrust is distributed and mostly designed on symmetric-key cryptography and an entropy-based commitment, and is able to fast authenticate spatial-temporal messages. FastTrust also ensures the anonymity and unlinkability of spatial-temporal messages by developing a pseudonym-varying scheduling scheme on cars. We provide both analytical and simulation evaluations to show that FastTrust achieves the security and privacy properties. FastTrust is low-cost in terms of communication and computational resources, authenticating 20 times faster than existing Elliptic Curve Digital Signature Algorithm.
The objective of this paper is to outline the design specification, implementation and evaluation of a proposed accelerated encryption framework which deploys both homomorphic and symmetric-key encryptions to serve the privacy preserving processing; in particular, as a sub-system within the Privacy Preserving Speech Processing framework architecture as part of the PPSP-in-Cloud Platform. Following a preliminary study of GPU efficiency gains optimisations benchmarked for AES implementation we have addressed and resolved the Big Integer processing challenges in parallel implementation of bilinear pairing thus enabling the creation of partially homomorphic encryption schemes which facilitates applications such as speech processing in the encrypted domain on the cloud. This novel implementation has been validated in laboratory tests using a standard speech corpus and can be used for other application domains to support secure computation and privacy preserving big data storage/processing in the cloud.