Visible to the public Biblio

Filters: Keyword is Resistors  [Clear All Filters]
2021-11-08
Monjur, Mezanur Rahman, Sunkavilli, Sandeep, Yu, Qiaoyan.  2020.  ADobf: Obfuscated Detection Method against Analog Trojans on I2C Master-Slave Interface. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :1064–1067.
Hardware Trojan war is expanding from digital world to analog domain. Although hardware Trojans in digital integrated circuits have been extensively investigated, there still lacks study on the Trojans crossing the boundary between digital and analog worlds. This work uses Inter-integrated Circuit (I2C) as an example to demonstrate the potential security threats on its master-slave interface. Furthermore, an obfuscated Trojan detection method is proposed to monitor the abnormal behaviors induced by analog Trojans on the I2C interface. Experimental results confirm that the proposed method has a high sensitivity to the compromised clock signal and can mitigate the clock mute attack with a success rate of over 98%.
2021-06-01
Lopes, Carmelo Riccardo, Zito, Pietro, Lampasi, Alessandro, Ala, Guido, Zizzo, Gaetano, Sanseverino, Eleonora Riva.  2020.  Conceptual Design and Modeling of Fast Discharge Unit for Quench Protection of Superconducting Toroidal Field Magnets of DTT. 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON). :623—628.
The paper deals with the modelling and simulation of a Fast Discharge Unit (FDU) for quench protection of the Toroidal Field (TF) magnets of the Divertor Tokamak Test, an experimental facility under design and construction in Frascati (Italy). The FDU is a safety key component that protects the superconducting magnets when a quench is detected through the fast extraction of the energy stored in superconducting magnets by adding in the TF magnets a dump (or discharge) resistor. In the paper, two different configurations of dump resistors (fixed and variable respectively) have been analysed and discussed. As a first result, it is possible to underline that the configuration with variable dump resistor is more efficient than the one with a fixed dump resistor.
2020-07-20
Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
2018-02-06
Moukarzel, M., Eisenbarth, T., Sunar, B..  2017.  \#x03BC;Leech: A Side-Channel Evaluation Platform for IoT. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :25–28.

We propose $μ$Leech, a new embedded trusted platform module for next generation power scavenging devices. Such power scavenging devices are already widely deployed. For instance, the Square point-of-sale reader uses the microphone/speaker interface of a smartphone for communications and as power supply. While such devices are used as trusted devices in security critical applications in the wild, they have not been properly evaluated yet. $μ$Leech can securely store keys and provide cryptographic services to any connected smart phone. Our design also facilitates physical security analysis by providing interfaces to facilitate acquisition of power traces and clock manipulation attacks. Thus $μ$Leech empowers security researchers to analyze leakage in next generation embedded and IoT devices and to evaluate countermeasures before deployment.