Visible to the public Biblio

Filters: Author is Yu, Qiaoyan  [Clear All Filters]
2021-11-08
Monjur, Mezanur Rahman, Sunkavilli, Sandeep, Yu, Qiaoyan.  2020.  ADobf: Obfuscated Detection Method against Analog Trojans on I2C Master-Slave Interface. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :1064–1067.
Hardware Trojan war is expanding from digital world to analog domain. Although hardware Trojans in digital integrated circuits have been extensively investigated, there still lacks study on the Trojans crossing the boundary between digital and analog worlds. This work uses Inter-integrated Circuit (I2C) as an example to demonstrate the potential security threats on its master-slave interface. Furthermore, an obfuscated Trojan detection method is proposed to monitor the abnormal behaviors induced by analog Trojans on the I2C interface. Experimental results confirm that the proposed method has a high sensitivity to the compromised clock signal and can mitigate the clock mute attack with a success rate of over 98%.
2021-09-30
Zhang, Zhiming, Yu, Qiaoyan.  2020.  Invariance Checking Based Trojan Detection Method for Three-Dimensional Integrated Circuits. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Recently literature indicates that stack based three-dimensional (3D) integration techniques may bring in new security vulnerabilities, such as new attack surfaces for hardware Trojan (HT) insertion. Compared to its two-dimensional counterpart (2DHTs), a 3D hardware Trojan (3DHT) could be stealthily distributed in multiple tiers in a single 3D chip. Although the comprehensive models for 3DHTs are available in recent work, there still lacks 3DHT detection and mitigation methods, especially run-time countermeasures against 3DHTs. This work proposes to leverage the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier hardware Trojans in stacked multi-tier chips. An invariance checking method is further proposed to detect the Trojans that induce malicious NoC packets or facilitate information leak. The proposed method is successfully deployed in NoC routers and achieves a Trojan detection rate of over 94%. The synthesis result of a hardened router at a 45nm technology node shows that the proposed invariance checking only increases the area by 6.49% and consumes 3.76% more dynamic power than an existing 3D router. The NoC protected with the proposed method is applied to the image authentication in a 3D system. The case study indicates that the proposed security measure reduces the correlation coefficient by up to 31% over the baseline.
2020-11-02
Wang, Jiawei, Zhang, Yuejun, Wang, Pengjun, Luan, Zhicun, Xue, Xiaoyong, Zeng, Xiaoyang, Yu, Qiaoyan.  2019.  An Orthogonal Algorithm for Key Management in Hardware Obfuscation. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—4.

The globalization of supply chain makes semiconductor chips susceptible to various security threats. Design obfuscation techniques have been widely investigated to thwart intellectual property (IP) piracy attacks. Key distribution among IP providers, system integration team, and end users remains as a challenging problem. This work proposes an orthogonal obfuscation method, which utilizes an orthogonal matrix to authenticate obfuscation keys, rather than directly examining each activation key. The proposed method hides the keys by using an orthogonal obfuscation algorithm to increasing the key retrieval time, such that the primary keys for IP cores will not be leaked. The simulation results show that the proposed method reduces the key retrieval time by 36.3% over the baseline. The proposed obfuscation methods have been successfully applied to ISCAS'89 benchmark circuits. Experimental results indicate that the orthogonal obfuscation only increases the area by 3.4% and consumes 4.7% more power than the baseline1.

2018-05-01
Dofe, Jaya, Gu, Peng, Stow, Dylan, Yu, Qiaoyan, Kursun, Eren, Xie, Yuan.  2017.  Security Threats and Countermeasures in Three-Dimensional Integrated Circuits. Proceedings of the on Great Lakes Symposium on VLSI 2017. :321–326.

Existing works on Three-dimensional (3D) hardware security focus on leveraging the unique 3D characteristics to address the supply chain attacks that exist in 2D design. However, 3D ICs introduce specific and unexplored challenges as well as new opportunities for managing hardware security. In this paper, we analyze new security threats unique to 3D ICs. The corresponding attack models are summarized for future research. Furthermore, existing representative countermeasures, including split manufacturing, camouflaging, transistor locking, techniques against thermal signal based side-channel attacks, and network-on-chip based shielding plane (NoCSIP) for different hardware threats are reviewed and categorized. Moreover, preliminary countermeasures are proposed to thwart TSV-based hardware Trojan insertion attacks.

2018-04-11
Kramer, Sean, Zhang, Zhiming, Dofe, Jaya, Yu, Qiaoyan.  2017.  Mitigating Control Flow Attacks in Embedded Systems with Novel Built-in Secure Register Bank. Proceedings of the on Great Lakes Symposium on VLSI 2017. :483–486.

Embedded systems are prone to security attacks from their limited resources available for self-protection and unsafe language typically used for application programming. Attacks targeting control flow is one of the most common exploitations for embedded systems. We propose a hardware-level, effective, and low overhead countermeasure to mitigate these types of attacks. In the proposed method, a Built-in Secure Register Bank (BSRB) is introduced to the processor micro-architecture to store the return addresses of subroutines. The inconsistency on the return addresses will direct the processor to select a clean copy to resume the normal control flow and mitigate the security threat. This proposed countermeasure is inaccessible for the programmer and does not require any compiler support, thus achieving better flexibility than software-based countermeasures. Experimental results show that the proposed method only increases the area and power by 3.8% and 4.4%, respectively, over the baseline OpenRISC processor.

2017-04-20
Dofe, Jaya, Yu, Qiaoyan, Wang, Hailang, Salman, Emre.  2016.  Hardware Security Threats and Potential Countermeasures in Emerging 3D ICs. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :69–74.

New hardware security threats are identified in emerging three-dimensional (3D) integrated circuits (ICs) and potential countermeasures are introduced. Trigger and payload mechanisms for future 3D hardware Trojans are predicted. Furthermore, a novel, network-on-chip based 3D obfuscation method is proposed to block the direct communication between two commercial dies in a 3D structure, thus thwarting reverse engineering attacks on the vertical dimension. Simulation results demonstrate that the proposed method effectively obfuscates the cross-plane communication by increasing the reverse engineering time by approximately 5x as compared to using direct through silicon via (TSV) connections. The proposed method consumes approximately one fifth the area and power of a typical network-on-chip designed in a 65 nm technology, exhibiting limited overhead.