Visible to the public Biblio

Filters: Keyword is uncertainty handling  [Clear All Filters]
2021-02-16
Kowalski, P., Zocholl, M., Jousselme, A.-L..  2020.  Explainability in threat assessment with evidential networks and sensitivity spaces. 2020 IEEE 23rd International Conference on Information Fusion (FUSION). :1—8.
One of the main threats to the underwater communication cables identified in the recent years is possible tampering or damage by malicious actors. This paper proposes a solution with explanation abilities to detect and investigate this kind of threat within the evidence theory framework. The reasoning scheme implements the traditional “opportunity-capability-intent” threat model to assess a degree to which a given vessel may pose a threat. The scenario discussed considers a variety of possible pieces of information available from different sources. A source quality model is used to reason with the partially reliable sources and the impact of this meta-information on the overall assessment is illustrated. Examples of uncertain relationships between the relevant variables are modelled and the constructed model is used to investigate the probability of threat of four vessels of different types. One of these cases is discussed in more detail to demonstrate the explanation abilities. Explanations about inference are provided thanks to sensitivity spaces in which the impact of the different pieces of information on the reasoning are compared.
2020-12-07
Islam, M. M., Karmakar, G., Kamruzzaman, J., Murshed, M..  2019.  Measuring Trustworthiness of IoT Image Sensor Data Using Other Sensors’ Complementary Multimodal Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :775–780.
Trust of image sensor data is becoming increasingly important as the Internet of Things (IoT) applications grow from home appliances to surveillance. Up to our knowledge, there exists only one work in literature that estimates trustworthiness of digital images applied to forensic applications, based on a machine learning technique. The efficacy of this technique is heavily dependent on availability of an appropriate training set and adequate variation of IoT sensor data with noise, interference and environmental condition, but availability of such data cannot be assured always. Therefore, to overcome this limitation, a robust method capable of estimating trustworthy measure with high accuracy is needed. Lowering cost of sensors allow many IoT applications to use multiple types of sensors to observe the same event. In such cases, complementary multimodal data of one sensor can be exploited to measure trust level of another sensor data. In this paper, for the first time, we introduce a completely new approach to estimate the trustworthiness of an image sensor data using another sensor's numerical data. We develop a theoretical model using the Dempster-Shafer theory (DST) framework. The efficacy of the proposed model in estimating trust level of an image sensor data is analyzed by observing a fire event using IoT image and temperature sensor data in a residential setup under different scenarios. The proposed model produces highly accurate trust level in all scenarios with authentic and forged image data.
2020-11-20
Sun, Y., Wang, J., Lu, Z..  2019.  Asynchronous Parallel Surrogate Optimization Algorithm Based on Ensemble Surrogating Model and Stochastic Response Surface Method. :74—84.
{Surrogate model-based optimization algorithm remains as an important solution to expensive black-box function optimization. The introduction of ensemble model enables the algorithm to automatically choose a proper model integration mode and adapt to various parameter spaces when dealing with different problems. However, this also significantly increases the computational burden of the algorithm. On the other hand, utilizing parallel computing resources and improving efficiency of black-box function optimization also require combination with surrogate optimization algorithm in order to design and realize an efficient parallel parameter space sampling mechanism. This paper makes use of parallel computing technology to speed up the weight updating related computation for the ensemble model based on Dempster-Shafer theory, and combines it with stochastic response surface method to develop a novel parallel sampling mechanism for asynchronous parameter optimization. Furthermore, it designs and implements corresponding parallel computing framework and applies the developed algorithm to quantitative trading strategy tuning in financial market. It is verified that the algorithm is both feasible and effective in actual application. The experiment demonstrates that with guarantee of optimizing performance, the parallel optimization algorithm can achieve excellent accelerating effect.
2020-01-02
Shabanov, Boris, Sotnikov, Alexander, Palyukh, Boris, Vetrov, Alexander, Alexandrova, Darya.  2019.  Expert System for Managing Policy of Technological Security in Uncertainty Conditions: Architectural, Algorithmic, and Computing Aspects. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1716–1721.

The paper discusses the architectural, algorithmic and computing aspects of creating and operating a class of expert system for managing technological safety of an enterprise, in conditions of a large flow of diagnostic variables. The algorithm for finding a faulty technological chain uses expert information, formed as a set of evidence on the influence of diagnostic variables on the correctness of the technological process. Using the Dempster-Schafer trust function allows determining the overall probability measure on subsets of faulty process chains. To combine different evidence, the orthogonal sums of the base probabilities determined for each evidence are calculated. The procedure described above is converted into the rules of the knowledge base production. The description of the developed prototype of the expert system, its architecture, algorithmic and software is given. The functionality of the expert system and configuration tools for a specific type of production are under discussion.

2019-12-30
Heydari, Mohammad, Mylonas, Alexios, Katos, Vasilios, Balaguer-Ballester, Emili, Tafreshi, Vahid Heydari Fami, Benkhelifa, Elhadj.  2019.  Uncertainty-Aware Authentication Model for Fog Computing in IoT. 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). :52–59.

Since the term “Fog Computing” has been coined by Cisco Systems in 2012, security and privacy issues of this promising paradigm are still open challenges. Among various security challenges, Access Control is a crucial concern for all cloud computing-like systems (e.g. Fog computing, Mobile edge computing) in the IoT era. Therefore, assigning the precise level of access in such an inherently scalable, heterogeneous and dynamic environment is not easy to perform. This work defines the uncertainty challenge for authentication phase of the access control in fog computing because on one hand fog has a number of characteristics that amplify uncertainty in authentication and on the other hand applying traditional access control models does not result in a flexible and resilient solution. Therefore, we have proposed a novel prediction model based on the extension of Attribute Based Access Control (ABAC) model. Our data-driven model is able to handle uncertainty in authentication. It is also able to consider the mobility of mobile edge devices in order to handle authentication. In doing so, we have built our model using and comparing four supervised classification algorithms namely as Decision Tree, Naïve Bayes, Logistic Regression and Support Vector Machine. Our model can achieve authentication performance with 88.14% accuracy using Logistic Regression.

2017-12-20
Wang, M., Li, Z., Lin, Y..  2017.  A Distributed Intrusion Detection System for Cognitive Radio Networks Based on Evidence Theory. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :226–232.

Reliable detection of intrusion is the basis of safety in cognitive radio networks (CRNs). So far, few scholars applied intrusion detection systems (IDSs) to combat intrusion against CRNs. In order to improve the performance of intrusion detection in CRNs, a distributed intrusion detection scheme has been proposed. In this paper, a method base on Dempster-Shafer's (D-S) evidence theory to detect intrusion in CRNs is put forward, in which the detection data and credibility of different local IDS Agent is combined by D-S in the cooperative detection center, so that different local detection decisions are taken into consideration in the final decision. The effectiveness of the proposed scheme is verified by simulation, and the results reflect a noticeable performance improvement between the proposed scheme and the traditional method.

2017-12-12
Kimmig, A., Memory, A., Miller, R. J., Getoor, L..  2017.  A Collective, Probabilistic Approach to Schema Mapping. 2017 IEEE 33rd International Conference on Data Engineering (ICDE). :921–932.

We propose a probabilistic approach to the problem of schema mapping. Our approach is declarative, scalable, and extensible. It builds upon recent results in both schema mapping and probabilistic reasoning and contributes novel techniques in both fields. We introduce the problem of mapping selection, that is, choosing the best mapping from a space of potential mappings, given both metadata constraints and a data example. As selection has to reason holistically about the inputs and the dependencies between the chosen mappings, we define a new schema mapping optimization problem which captures interactions between mappings. We then introduce Collective Mapping Discovery (CMD), our solution to this problem using stateof- the-art probabilistic reasoning techniques, which allows for inconsistencies and incompleteness. Using hundreds of realistic integration scenarios, we demonstrate that the accuracy of CMD is more than 33% above that of metadata-only approaches already for small data examples, and that CMD routinely finds perfect mappings even if a quarter of the data is inconsistent.

2015-05-06
Zhexiong Wei, Tang, H., Yu, F.R., Maoyu Wang, Mason, P..  2014.  Security Enhancements for Mobile Ad Hoc Networks With Trust Management Using Uncertain Reasoning. Vehicular Technology, IEEE Transactions on. 63:4647-4658.

The distinctive features of mobile ad hoc networks (MANETs), including dynamic topology and open wireless medium, may lead to MANETs suffering from many security vulnerabilities. In this paper, using recent advances in uncertain reasoning that originated from the artificial intelligence community, we propose a unified trust management scheme that enhances the security in MANETs. In the proposed trust management scheme, the trust model has two components: trust from direct observation and trust from indirect observation. With direct observation from an observer node, the trust value is derived using Bayesian inference, which is a type of uncertain reasoning when the full probability model can be defined. On the other hand, with indirect observation, which is also called secondhand information that is obtained from neighbor nodes of the observer node, the trust value is derived using the Dempster-Shafer theory (DST), which is another type of uncertain reasoning when the proposition of interest can be derived by an indirect method. By combining these two components in the trust model, we can obtain more accurate trust values of the observed nodes in MANETs. We then evaluate our scheme under the scenario of MANET routing. Extensive simulation results show the effectiveness of the proposed scheme. Specifically, throughput and packet delivery ratio (PDR) can be improved significantly with slightly increased average end-to-end delay and overhead of messages.

2015-04-30
Athanasiou, G., Fengou, M.-A., Beis, A., Lymberopoulos, D..  2014.  A novel trust evaluation method for Ubiquitous Healthcare based on cloud computational theory. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. :4503-4506.

The notion of trust is considered to be the cornerstone on patient-psychiatrist relationship. Thus, a trustfully background is fundamental requirement for provision of effective Ubiquitous Healthcare (UH) service. In this paper, the issue of Trust Evaluation of UH Providers when register UH environment is addressed. For that purpose a novel trust evaluation method is proposed, based on cloud theory, exploiting User Profile attributes. This theory mimics human thinking, regarding trust evaluation and captures fuzziness and randomness of this uncertain reasoning. Two case studies are investigated through simulation in MATLAB software, in order to verify the effectiveness of this novel method.