Biblio
A process of critical transmission lines identification in presented here. The criticality is based on network flow, which is essential for power grid connectivity monitoring as well as vulnerability assessment. The proposed method can be utilized as a supplement of traditional situational awareness tool in the energy management system of the power grid control center. At first, a flow network is obtained from topological as well as functional features of the power grid. Then from the duality property of a linear programming problem, the maximum flow problem is converted to a minimum cut problem. Critical transmission lines are identified as a solution of the dual problem. An overall set of transmission lines are identified from the solution of the network flow problem. Simulation of standard IEEE test cases validates the application of the method in finding critical transmission lines of the power grid.
The power outages of the last couple of years around the world introduce the indispensability of technological development to improve the traditional power grids. Early warnings of imminent failures represent one of the major required improvements. Costly blackouts throughout the world caused by the different severe incidents in traditional power grids have motivated researchers to diagnose and investigate previous blackouts and propose a prediction model that enables to prevent power outages. Although, in the new generation of power grid, the smart grid's (SG) real time data can be used from smart meters (SMs) and phasor measurement unit sensors (PMU) to prevent blackout, it demands high reliability and stability against power outages. This paper implements a proactive prediction model based on deep-belief networks that can predict imminent blackout. The proposed model is evaluated on a real smart grid dataset. Promising results are reported in the case study.
As societies are becoming more dependent on the power grids, the security issues and blackout threats are more emphasized. This paper proposes a new graph model for online visualization and assessment of power grid security. The proposed model integrates topology and power flow information to estimate and visualize interdependencies between the lines in the form of line dependency graph (LDG) and immediate threats graph (ITG). These models enable the system operator to predict the impact of line outage and identify the most vulnerable and critical links in the power system. Line Vulnerability Index (LVI) and Line Criticality Index (LCI) are introduced as two indices extracted from LDG to aid the operator in decision making and contingency selection. This package can be useful in enhancing situational awareness in power grid operation by visualization and estimation of system threats. The proposed approach is tested for security analysis of IEEE 30-bus and IEEE 118-bus systems and the results are discussed.