Biblio
Cyber security is a topic of increasing relevance in relation to industrial networks. The higher intensity and intelligent use of data pushed by smart technology (Industry 4.0) together with an augmented integration between the operational technology (production) and the information technology (business) parts of the network have considerably raised the level of vulnerabilities. On the other hand, many industrial facilities still use serial networks as underlying communication system, and they are notoriously limited from a cyber security perspective since protection mechanisms available for ТСР/IР communication do not apply. Therefore, an attacker gaining access to a serial network can easily control the industrial components, potentially causing catastrophic incidents, jeopardizing assets and human lives. This study proposes a framework to act as an anomaly detection system (ADS) for industrial serial networks. It has three ingredients: an unsupervised К-means component to analyse message content, a knowledge-based Expert System component to analyse message metadata, and a voting process to generate alerts for security incidents, anomalous states, and faults. The framework was evaluated using the Proflbus-DP, a network simulator which implements a serial bus system. Results for the simulated traffic were promising: 99.90% for accuracy, 99,64% for precision, and 99.28% for F1-Score. They indicate feasibility of the framework applied to serial-based industrial networks.
Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.
Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.