Visible to the public Biblio

Filters: Keyword is industrial systems  [Clear All Filters]
2020-08-03
Ferraris, Davide, Fernandez-Gago, Carmen, Daniel, Joshua, Lopez, Javier.  2019.  A Segregated Architecture for a Trust-based Network of Internet of Things. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.
With the ever-increasing number of smart home devices, the issues related to these environments are also growing. With an ever-growing attack surface, there is no standard way to protect homes and their inhabitants from new threats. The inhabitants are rarely aware of the increased security threats that they are exposed to and how to manage them. To tackle this problem, we propose a solution based on segmented architectures similar to the ones used in industrial systems. In this approach, the smart home is segmented into various levels, which can broadly be categorised into an inner level and external level. The external level is protected by a firewall that checks the communication from/to the Internet to/from the external devices. The internal level is protected by an additional firewall that filters the information and the communications between the external and the internal devices. This segmentation guarantees a trusted environment among the entities of the internal network. In this paper, we propose an adaptive trust model that checks the behaviour of the entities and in case the entities violate trust rules they can be put in quarantine or banned from the network.
2018-02-14
Huang, K., Zhou, C., Tian, Y. C., Tu, W., Peng, Y..  2017.  Application of Bayesian network to data-driven cyber-security risk assessment in SCADA networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.