Visible to the public Biblio

Filters: Keyword is mechanical engineering computing  [Clear All Filters]
2020-05-18
Zhong, Guo-qiang, Wang, Huai-yu, Zheng, Shuai, JIA, Bao-zhu.  2019.  Research on fusion diagnosis method of thermal fault of Marine diesel engine. 2019 Chinese Automation Congress (CAC). :5371–5375.
In order to avoid the situation that the diagnosis model based on single sensor data is easily disturbed by environmental noise and the diagnosis accuracy is low, an intelligent fault fusion diagnosis method for marine diesel engine is proposed. Firstly, the support vector machine which is optimized by genetic algorithm is used to learn the fault sample data from different sensors, then multiple fault diagnosis models and results can be got. After that, multiple groups of diagnosis results are taken as evidence bodies and fused by evidence theory to obtain more accurate diagnosis results. By analyzing the sample data obtained from the fault simulation experiment of marine diesel engine based on AVL BOOST software, the proposed method can improve the fault diagnosis accuracy of marine diesel engine and reduce the uncertainty value of diagnosis results.
Zhao, Xiaohang, Zhang, Ke, Chai, Yi.  2019.  A Multivariate Time Series Classification based Multiple Fault Diagnosis Method for Hydraulic Systems. 2019 Chinese Control Conference (CCC). :6819–6824.
Hydraulic systems is a class of nonlinear complex systems. There are many typical characteristics with the systems: multiple functional components, multiple operation modes, space-time coupling work, and monitoring signals for faults are multivariate time series data, etc. Because of the characteristics, fault diagnosis for Hydraulic systems is not easy. Traditional fault diagnosis methods mostly ignore the multivariable timing characteristics of monitoring signals, it has made many detection and diagnosis (especially for multiple fault) can not keep high accuracy, and some of the methods are not even be able to multiple fault diagnosis. Aim at the problem, a multivariate time series classification based diagnosis method is proposed. Firstly, extracting timing characteristics (transformed features) from the time series data collected via sensors by 1-NN method. Secondly, training the transformed features by multi-class OVO-SVM to classify multivariate time series. Simulation of the method contains single fault and multiple faults conditions, the results show that the method has high accuracy, it can complete multiple-faults classification.
Lal Senanayaka, Jagath Sri, Van Khang, Huynh, Robbersmyr, Kjell G..  2018.  Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks. 2018 XIII International Conference on Electrical Machines (ICEM). :1900–1905.
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is proposed to detect common faults in the electric powertrains. The proposed method is based on pattern recognition using convolutional neural network to detect effectively not only single faults at constant speed but also multiple faults in variable speed operations. The effectiveness of the proposed method is validated via an in-house experimental setup.
2017-02-23
Ansari, M. R., Yu, S., Yu, Q..  2015.  "IntelliCAN: Attack-resilient Controller Area Network (CAN) for secure automobiles". 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). :233–236.

Controller Area Network (CAN) is the main bus network that connects electronic control units in automobiles. Although CAN protocols have been revised to improve the vehicle safety, the security weaknesses of CAN have not been fully addressed. Security threats on automobiles might be from external wireless communication or from internal malicious CAN nodes mounted on the CAN bus. Despite of various threat sources, the security weakness of CAN is the root of security problems. Due to the limited computation power and storage capacity on each CAN node, there is a lack of hardware-efficient protection methods for the CAN system without losing the compatibility to CAN protocols. To save the cost and maintain the compatibility, we propose to exploit the built-in CAN fault confinement mechanism to detect the masquerade attacks originated from the malicious CAN devices on the CAN bus. Simulation results show that our method achieves the attack misdetection rate at the order of 10-5 and reduces the encryption latency by up to 68% over the complete frame encryption method.

2015-04-30
Godwin, J.L., Matthews, P..  2014.  Rapid labelling of SCADA data to extract transparent rules using RIPPER. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-7.

This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.