Visible to the public Biblio

Filters: Keyword is pseudonymous identities  [Clear All Filters]
2020-03-02
Swathi, P, Modi, Chirag, Patel, Dhiren.  2019.  Preventing Sybil Attack in Blockchain Using Distributed Behavior Monitoring of Miners. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

Blockchain technology is useful with the record keeping of digital transactions, IoT, supply chain management etc. However, we have observed that the traditional attacks are possible on blockchain due to lack of robust identity management. We found that Sybil attack can cause severe impact in public/permissionless blockchain, in which an attacker can subvert the blockchain by creating a large number of pseudonymous identities (i.e. Fake user accounts) and push legitimate entities in the minority. Such virtual nodes can act like genuine nodes to create disproportionately large influence on the network. This may lead to several other attacks like DoS, DDoS etc. In this paper, a Sybil attack is demonstrated on a blockchain test bed with its impact on the throughput of the system. We propose a solution directive, in which each node monitors the behavior of other nodes and checks for the nodes which are forwarding the blocks of only particular user. Such nodes are quickly identified, blacklisted and notified to other nodes, and thus the Sybil attack can be restricted. We analyze experimental results of the proposed solution.

2018-02-14
Raju, S., Boddepalli, S., Gampa, S., Yan, Q., Deogun, J. S..  2017.  Identity management using blockchain for cognitive cellular networks. 2017 IEEE International Conference on Communications (ICC). :1–6.
Cloud-centric cognitive cellular networks utilize dynamic spectrum access and opportunistic network access technologies as a means to mitigate spectrum crunch and network demand. However, furnishing a carrier with personally identifiable information for user setup increases the risk of profiling in cognitive cellular networks, wherein users seek secondary access at various times with multiple carriers. Moreover, network access provisioning - assertion, authentication, authorization, and accounting - implemented in conventional cellular networks is inadequate in the cognitive space, as it is neither spontaneous nor scalable. In this paper, we propose a privacy-enhancing user identity management system using blockchain technology which places due importance on both anonymity and attribution, and supports end-to-end management from user assertion to usage billing. The setup enables network access using pseudonymous identities, hindering the reconstruction of a subscriber's identity. Our test results indicate that this approach diminishes access provisioning duration by up to 4x, decreases network signaling traffic by almost 40%, and enables near real-time user billing that may lead to approximately 3x reduction in payments settlement time.