Biblio
Botnets play major roles in a vast number of threats to network security, such as DDoS attacks, generation of spam emails, information theft. Detecting Botnets is a difficult task in due to the complexity and performance issues when analyzing the huge amount of data from real large-scale networks. In major Botnet malware, the use of Domain Generation Algorithms allows to decrease possibility to be detected using white list - blacklist scheme and thus DGA Botnets have higher survival. This paper proposes a DGA Botnet detection scheme based on DNS traffic analysis which utilizes semantic measures such as entropy, meaning the level of the domain, frequency of n-gram appearances and Mahalanobis distance for domain classification. The proposed method is an improvement of Phoenix botnet detection mechanism, where in the classification phase, the modified Mahalanobis distance is used instead of the original for classification. The clustering phase is based on modified k-means algorithm for archiving better effectiveness. The effectiveness of the proposed method was measured and compared with Phoenix, Linguistic and SVM Light methods. The experimental results show the accuracy of proposed Botnet detection scheme ranges from 90 to 99,97% depending on Botnet type.
This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.