Visible to the public Biblio

Filters: Keyword is Iris recognition  [Clear All Filters]
2021-09-30
dos Santos Dourado, Leonardo, Ishikawa, Edison.  2020.  Graphical Semantic Authentication. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Authenticate on the system using only the authentication method based on username and password is not enough to ensure an acceptable level of information security for a critical system. It has been used in a multi factor authentication to increase the information security during the authentication process. However factors like what you have cause an inconvenience to the users, because the users during the authentication process always will need to have a device in their possession that complements the authentication process. By the other side of the biometric factor might change during the time, it needs an auxiliary device that will increase the costs and it also might be dependent from environmental conditions to work appropriately. To avoid some problems that exist in multi factor authentication, this work purposes authentication through semantic representation in OWL (web Ontology Language) tuples of recognized concepts in images as a form to increase the security in the authentication process. A proof of the concept was modeled and implemented, it has a demonstration that the robustness of this authentication system depends on the complexity of relationship in the semantic base (ontology) and in the simplicity of the relationship identified in the images.
2021-03-09
Razaque, A., Amsaad, F., Almiani, M., Gulsezim, D., Almahameed, M. A., Al-Dmour, A., Khan, M. J., Ganda, R..  2020.  Successes and Failures in Exploring Biometric Algorithms in NIST Open Source Software and Data. 2020 Seventh International Conference on Software Defined Systems (SDS). :231—234.

With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.

2020-11-04
Howard, J. J., Blanchard, A. J., Sirotin, Y. B., Hasselgren, J. A., Vemury, A. R..  2018.  An Investigation of High-Throughput Biometric Systems: Results of the 2018 Department of Homeland Security Biometric Technology Rally. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). :1—7.

The 2018 Biometric Technology Rally was an evaluation, sponsored by the U.S. Department of Homeland Security, Science and Technology Directorate (DHS S&T), that challenged industry to provide face or face/iris systems capable of unmanned, traveler identification in a high-throughput security environment. Selected systems were installed at the Maryland Test Facility (MdTF), a DHS S&T affiliated bio-metrics testing laboratory, and evaluated using a population of 363 naive human subjects recruited from the general public. The performance of each system was examined based on measured throughput, capture capability, matching capability, and user satisfaction metrics. This research documents the performance of unmanned face and face/iris systems required to maintain an average total subject interaction time of less than 10 seconds. The results highlight discrepancies between the performance of biometric systems as anticipated by the system designers and the measured performance, indicating an incomplete understanding of the main determinants of system performance. Our research shows that failure-to-acquire errors, unpredicted by system designers, were the main driver of non-identification rates instead of failure-to-match errors, which were better predicted. This outcome indicates the need for a renewed focus on reducing the failure-to-acquire rate in high-throughput, unmanned biometric systems.

2020-09-14
Sivaram, M., Ahamed A, Mohamed Uvaze, Yuvaraj, D., Megala, G., Porkodi, V., Kandasamy, Manivel.  2019.  Biometric Security and Performance Metrics: FAR, FER, CER, FRR. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :770–772.
Biometrics manages the computerized acknowledgment of people dependent on natural and social attributes. The example acknowledgment framework perceives an individual by deciding the credibility of a particular conduct normal for person. The primary rule of biometric framework is recognizable proof and check. A biometric confirmation framework use fingerprints, face, hand geometry, iris, and voice, mark, and keystroke elements of a person to recognize an individual or to check a guaranteed character. Biometrics authentication is a form of identification and access control process which identify individuals in packs that are under reconnaissance. Biometric security system increase in the overall security and individuals no longer have to deal with lost ID Cards or forgotten passwords. It helps much organization to see everyone is at a certain time when something might have happened that needs reviewed. The current issues in biometric system with individuals and many organization facing are personal privacy, expensive, data's may be stolen.
2020-08-28
[Anonymous].  2019.  Multimodal Biometrics Feature Level Fusion for Iris and Hand Geometry Using Chaos-based Encryption Technique. 2019 Fifth International Conference on Image Information Processing (ICIIP). :304—309.
Biometrics has enormous role to authenticate or substantiate an individual's on the basis of their physiological or behavioral attributes for pattern recognition system. Multimodal biometric systems cover up the limitations of single/ uni-biometric system. In this work, the multimodal biometric system is proposed; iris and hand geometry features are fused at feature level. The iris features are extracted by using moments and morphological operations are used to extract the features of hand geometry. The Chaos-based encryption is applied in order to enhance the high security on the database. Accuracy is predicted by performing the matching process. The experimental result shows that the overall performance of multimodal system has increased with accuracy, Genuine Acceptance Rate (GAR) and reduces with False Acceptance Rate (FAR) and False Rejection Rate (FRR) by using chaos with iris and hand geometry biometrics.
Rieger, Martin, Hämmerle-Uhl, Jutta, Uhl, Andreas.  2019.  Selective Jpeg2000 Encryption of Iris Data: Protecting Sample Data vs. Normalised Texture. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2602—2606.
Biometric system security requires cryptographic protection of sample data under certain circumstances. We assess low complexity selective encryption schemes applied to JPEG2000 compressed iris data by conducting iris recognition on the selectively encrypted data. This paper specifically compares the effects of a recently proposed approach, i.e. applying selective encryption to normalised texture data, to encrypting classical sample data. We assess achieved protection level as well as computational cost of the considered schemes, and particularly highlight the role of segmentation in obtaining surprising results.
Kolberg, Jascha, Bauspieß, Pia, Gomez-Barrero, Marta, Rathgeb, Christian, Dürmuth, Markus, Busch, Christoph.  2019.  Template Protection based on Homomorphic Encryption: Computationally Efficient Application to Iris-Biometric Verification and Identification. 2019 IEEE International Workshop on Information Forensics and Security (WIFS). :1—6.

When employing biometric recognition systems, we have to take into account that biometric data are considered sensitive data. This has raised some privacy issues, and therefore secure systems providing template protection are required. Using homomorphic encryption, permanent protection can be ensured, since templates are stored and compared in the encrypted domain. In addition, the unprotected system's accuracy is preserved. To solve the problem of the computational overload linked to the encryption scheme, we present an early decision making strategy for iris-codes. In order to improve the recognition accuracy, the most consistent bits of the iris-code are moved to the beginning of the template. This allows an accurate block-wise comparison, thereby reducing the execution time. Hence, the resulting system grants template protection in a computationally efficient way. More specifically, in the experimental evaluation in identification mode, the block-wise comparison achieves a 92% speed-up on the IITD database with 300 enrolled templates.

2020-06-26
Shengquan, Wang, Xianglong, Li, Ang, Li, Shenlong, Jiang.  2019.  Research on Iris Edge Detection Technology based on Daugman Algorithm. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :308—311.

In the current society, people pay more and more attention to identity security, especially in the case of some highly confidential or personal privacy, one-to-one identification is particularly important. The iris recognition just has the characteristics of high efficiency, not easy to be counterfeited, etc., which has been promoted as an identity technology. This paper has carried out research on daugman algorithm and iris edge detection.

2020-02-10
Mowla, Nishat I, Doh, Inshil, Chae, Kijoon.  2019.  Binarized Multi-Factor Cognitive Detection of Bio-Modality Spoofing in Fog Based Medical Cyber-Physical System. 2019 International Conference on Information Networking (ICOIN). :43–48.
Bio-modalities are ideal for user authentication in Medical Cyber-Physical Systems. Various forms of bio-modalities, such as the face, iris, fingerprint, are commonly used for secure user authentication. Concurrently, various spoofing approaches have also been developed over time which can fail traditional bio-modality detection systems. Image synthesis with play-doh, gelatin, ecoflex etc. are some of the ways used in spoofing bio-identifiable property. Since the bio-modality detection sensors are small and resource constrained, heavy-weight detection mechanisms are not suitable for these sensors. Recently, Fog based architectures are proposed to support sensor management in the Medical Cyber-Physical Systems (MCPS). A thin software client running in these resource-constrained sensors can enable communication with fog nodes for better management and analysis. Therefore, we propose a fog-based security application to detect bio-modality spoofing in a Fog based MCPS. In this regard, we propose a machine learning based security algorithm run as an application at the fog node using a binarized multi-factor boosted ensemble learner algorithm coupled with feature selection. Our proposal is verified on real datasets provided by the Replay Attack, Warsaw and LiveDet 2015 Crossmatch benchmark for face, iris and fingerprint modality spoofing detection used for authentication in an MCPS. The experimental analysis shows that our approach achieves significant performance gain over the state-of-the-art approaches.
2019-03-22
Ali, M. A. M., Tahir, N. M..  2018.  Cancelable Biometrics Technique for Iris Recognition. 2018 IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE). :434-437.

Iris recognition is one of the most reliable biometrics for identification purpose in terms of reliability and accuracy. Hence, in this research the integration of cancelable biometrics features for iris recognition using encryption and decryption non-invertible transformation is proposed. Here, the biometric data is protected via the proposed cancelable biometrics method. The experimental results showed that the recognition rate achieved is 99.9% using Bath-A dataset with a maximum decision criterion of 0.97 along with acceptable processing time.

2018-02-14
Buchmann, N., Rathgeb, C., Baier, H., Busch, C., Margraf, M..  2017.  Enhancing Breeder Document Long-Term Security Using Blockchain Technology. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:744–748.

In contrast to electronic travel documents (e.g. ePassports), the standardisation of breeder documents (e.g. birth certificates), regarding harmonisation of content and contained security features is in statu nascendi. Due to the fact that breeder documents can be used as an evidence of identity and enable the application for electronic travel documents, they pose the weakest link in the identity life cycle and represent a security gap for identity management. In this work, we present a cost efficient way to enhance the long-term security of breeder documents by utilizing blockchain technology. A conceptual architecture to enhance breeder document long-term security and an introduction of the concept's constituting system components is presented. Our investigations provide evidence that the Bitcoin blockchain is most suitable for breeder document long-term security.