Visible to the public Biblio

Filters: Keyword is preprocessing method  [Clear All Filters]
2020-09-28
Akaishi, Sota, Uda, Ryuya.  2019.  Classification of XSS Attacks by Machine Learning with Frequency of Appearance and Co-occurrence. 2019 53rd Annual Conference on Information Sciences and Systems (CISS). :1–6.
Cross site scripting (XSS) attack is one of the attacks on the web. It brings session hijack with HTTP cookies, information collection with fake HTML input form and phishing with dummy sites. As a countermeasure of XSS attack, machine learning has attracted a lot of attention. There are existing researches in which SVM, Random Forest and SCW are used for the detection of the attack. However, in the researches, there are problems that the size of data set is too small or unbalanced, and that preprocessing method for vectorization of strings causes misclassification. The highest accuracy of the classification was 98% in existing researches. Therefore, in this paper, we improved the preprocessing method for vectorization by using word2vec to find the frequency of appearance and co-occurrence of the words in XSS attack scripts. Moreover, we also used a large data set to decrease the deviation of the data. Furthermore, we evaluated the classification results with two procedures. One is an inappropriate procedure which some researchers tend to select by mistake. The other is an appropriate procedure which can be applied to an attack detection filter in the real environment.
2018-02-15
Zalbina, M. R., Septian, T. W., Stiawan, D., Idris, M. Y., Heryanto, A., Budiarto, R..  2017.  Payload recognition and detection of Cross Site Scripting attack. 2017 2nd International Conference on Anti-Cyber Crimes (ICACC). :172–176.

Web Application becomes the leading solution for the utilization of systems that need access globally, distributed, cost-effective, as well as the diversity of the content that can run on this technology. At the same time web application security have always been a major issue that must be considered due to the fact that 60% of Internet attacks targeting web application platform. One of the biggest impacts on this technology is Cross Site Scripting (XSS) attack, the most frequently occurred and are always in the TOP 10 list of Open Web Application Security Project (OWASP). Vulnerabilities in this attack occur in the absence of checking, testing, and the attention about secure coding practices. There are several alternatives to prevent the attacks that associated with this threat. Network Intrusion Detection System can be used as one solution to prevent the influence of XSS Attack. This paper investigates the XSS attack recognition and detection using regular expression pattern matching and a preprocessing method. Experiments are conducted on a testbed with the aim to reveal the behaviour of the attack.