Biblio
Java is a safe programming language by providing bytecode verification and enforcing memory protection. For instance, programmers cannot directly access the memory but have to use object references. Yet, the Java runtime provides an Unsafe API as a backdoor for the developers to access the low- level system code. Whereas the Unsafe API is designed to be used by the Java core library, a growing community of third-party libraries use it to achieve high performance. The Unsafe API is powerful, but dangerous, which leads to data corruption, resource leaks and difficult-to-diagnose JVM crash if used improperly. In this work, we study the Unsafe crash patterns and propose a memory checker to enforce memory safety, thus avoiding the JVM crash caused by the misuse of the Unsafe API at the bytecode level. We evaluate our technique on real crash cases from the openJDK bug system and real-world applications from AJDK. Our tool reduces the efforts from several days to a few minutes for the developers to diagnose the Unsafe related crashes. We also evaluate the runtime overhead of our tool on projects using intensive Unsafe operations, and the result shows that our tool causes a negligible perturbation to the execution of the applications.
Much recent work focuses on finding bugs and security vulnerabilities in smart contracts written in existing languages. Although this approach may be helpful, it does not address flaws in the underlying programming language, which can facilitate writing buggy code in the first place. We advocate a re-thinking of the blockchain software engineering tool set, starting with the programming language in which smart contracts are written. In this paper, we propose and justify requirements for a new generation of blockchain software development tools. New tools should (1) consider users' needs as a primary concern; (2) seek to facilitate safe development by detecting relevant classes of serious bugs at compile time; (3) as much as possible, be blockchain-agnostic, given the wide variety of different blockchain platforms available, and leverage the properties that are common among blockchain environments to improve safety and developer effectiveness.
Software metrics help developers discover and fix mistakes. However, despite promising empirical evidence, vulnerability discovery metrics are seldom relied upon in practice. In prior research, the effectiveness of these metrics has typically been expressed using precision and recall of a prediction model that uses the metrics as explanatory variables. These prediction models, being black boxes, may not be perceived as useful by developers. However, by systematically interpreting the models and metrics, we can provide developers with nuanced insights about factors that have led to security mistakes in the past. In this paper, we present a preliminary approach to using vulnerability discovery metrics to provide insightful feedback to developers as they engineer software. We collected ten metrics (churn, collaboration centrality, complexity, contribution centrality, nesting, known offender, source lines of code, \# inputs, \# outputs, and \# paths) from six open-source projects. We assessed the generalizability of the metrics across two contextual dimensions (application domain and programming language) and between projects within a domain, computed thresholds for the metrics using an unsupervised approach from literature, and assessed the ability of these unsupervised thresholds to classify risk from historical vulnerabilities in the Chromium project. The observations from this study feeds into our ongoing research to automatically aggregate insights from the various analyses to generate natural language feedback on security. We hope that our approach to generate automated feedback will accelerate the adoption of research in vulnerability discovery metrics.
The Web today is a growing universe of pages and applications teeming with interactive content. The security of such applications is of the utmost importance, as exploits can have a devastating impact on personal and economic levels. The number one programming language in Web applications is PHP, powering more than 80% of the top ten million websites. Yet it was not designed with security in mind and, today, bears a patchwork of fixes and inconsistently designed functions with often unexpected and hardly predictable behavior that typically yield a large attack surface. Consequently, it is prone to different types of vulnerabilities, such as SQL Injection or Cross-Site Scripting. In this paper, we present an interprocedural analysis technique for PHP applications based on code property graphs that scales well to large amounts of code and is highly adaptable in its nature. We implement our prototype using the latest features of PHP 7, leverage an efficient graph database to store code property graphs for PHP, and subsequently identify different types of Web application vulnerabilities by means of programmable graph traversals. We show the efficacy and the scalability of our approach by reporting on an analysis of 1,854 popular open-source projects, comprising almost 80 million lines of code.