Visible to the public Biblio

Filters: Author is Backes, M.  [Clear All Filters]
2018-05-09
Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M. L., Stransky, C..  2017.  Comparing the Usability of Cryptographic APIs. 2017 IEEE Symposium on Security and Privacy (SP). :154–171.
Potentially dangerous cryptography errors are well-documented in many applications. Conventional wisdom suggests that many of these errors are caused by cryptographic Application Programming Interfaces (APIs) that are too complicated, have insecure defaults, or are poorly documented. To address this problem, researchers have created several cryptographic libraries that they claim are more usable, however, none of these libraries have been empirically evaluated for their ability to promote more secure development. This paper is the first to examine both how and why the design and resulting usability of different cryptographic libraries affects the security of code written with them, with the goal of understanding how to build effective future libraries. We conducted a controlled experiment in which 256 Python developers recruited from GitHub attempt common tasks involving symmetric and asymmetric cryptography using one of five different APIs. We examine their resulting code for functional correctness and security, and compare their results to their self-reported sentiment about their assigned library. Our results suggest that while APIs designed for simplicity can provide security benefits - reducing the decision space, as expected, prevents choice of insecure parameters - simplicity is not enough. Poor documentation, missing code examples, and a lack of auxiliary features such as secure key storage, caused even participants assigned to simplified libraries to struggle with both basic functional correctness and security. Surprisingly, the availability of comprehensive documentation and easy-to-use code examples seems to compensate for more complicated APIs in terms of functionally correct results and participant reactions, however, this did not extend to security results. We find it particularly concerning that for about 20% of functionally correct tasks, across libraries, participants believed their code was secure when it was not. Our results suggest that while ne- cryptographic libraries that want to promote effective security should offer a simple, convenient interface, this is not enough: they should also, and perhaps more importantly, ensure support for a broad range of common tasks and provide accessible documentation with secure, easy-to-use code examples.
2018-02-15
Backes, M., Rieck, K., Skoruppa, M., Stock, B., Yamaguchi, F..  2017.  Efficient and Flexible Discovery of PHP Application Vulnerabilities. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :334–349.

The Web today is a growing universe of pages and applications teeming with interactive content. The security of such applications is of the utmost importance, as exploits can have a devastating impact on personal and economic levels. The number one programming language in Web applications is PHP, powering more than 80% of the top ten million websites. Yet it was not designed with security in mind and, today, bears a patchwork of fixes and inconsistently designed functions with often unexpected and hardly predictable behavior that typically yield a large attack surface. Consequently, it is prone to different types of vulnerabilities, such as SQL Injection or Cross-Site Scripting. In this paper, we present an interprocedural analysis technique for PHP applications based on code property graphs that scales well to large amounts of code and is highly adaptable in its nature. We implement our prototype using the latest features of PHP 7, leverage an efficient graph database to store code property graphs for PHP, and subsequently identify different types of Web application vulnerabilities by means of programmable graph traversals. We show the efficacy and the scalability of our approach by reporting on an analysis of 1,854 popular open-source projects, comprising almost 80 million lines of code.

2018-02-14
Backes, M., Keefe, K., Valdes, A..  2017.  A microgrid ontology for the analysis of cyber-physical security. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
The IEC 61850 protocol suite for electrical sub-station automation enables substation configuration and design for protection, communication, and control. These power system applications can be formally verified through use of object models, common data classes, and message classes. The IEC 61850-7-420 DER (Distributed Energy Resource) extension further defines object classes for assets such as types of DER (e.g., energy storage, photovoltaic), DER unit controllers, and other DER-associated devices (e.g., inverter). These object classes describe asset-specific attributes such as state of charge, capacity limits, and ramp rate. Attributes can be fixed (rated capacity of the device) dynamic (state of charge), or binary (on or off, dispatched or off-line, operational or fault state). We sketch out a proposed ontology based on the 61850 and 61850-7-420 DER object classes to model threats against a micro-grid, which is an electrical system consisting of controllable loads and distributed generation that can function autonomously (in island mode) or connected to a larger utility grid. We consider threats against the measurements on which the control loop is based, as well as attacks against the control directives and the communication infrastructure. We use this ontology to build a threat model using the ADversary View Security Evaluation (ADVISE) framework, which enables identification of attack paths based on adversary objectives (for example, destabilize the entire micro-grid by reconnecting to the utility without synchronization) and helps identify defender strategies. Furthermore, the ADVISE method provides quantitative security metrics that can help inform trade-off decisions made by system architects and controls.
2018-01-23
Backes, M., Berrang, P., Bieg, M., Eils, R., Herrmann, C., Humbert, M., Lehmann, I..  2017.  Identifying Personal DNA Methylation Profiles by Genotype Inference. 2017 IEEE Symposium on Security and Privacy (SP). :957–976.

Since the first whole-genome sequencing, the biomedical research community has made significant steps towards a more precise, predictive and personalized medicine. Genomic data is nowadays widely considered privacy-sensitive and consequently protected by strict regulations and released only after careful consideration. Various additional types of biomedical data, however, are not shielded by any dedicated legal means and consequently disseminated much less thoughtfully. This in particular holds true for DNA methylation data as one of the most important and well-understood epigenetic element influencing human health. In this paper, we show that, in contrast to the aforementioned belief, releasing one's DNA methylation data causes privacy issues akin to releasing one's actual genome. We show that already a small subset of methylation regions influenced by genomic variants are sufficient to infer parts of someone's genome, and to further map this DNA methylation profile to the corresponding genome. Notably, we show that such re-identification is possible with 97.5% accuracy, relying on a dataset of more than 2500 genomes, and that we can reject all wrongly matched genomes using an appropriate statistical test. We provide means for countering this threat by proposing a novel cryptographic scheme for privately classifying tumors that enables a privacy-respecting medical diagnosis in a common clinical setting. The scheme relies on a combination of random forests and homomorphic encryption, and it is proven secure in the honest-but-curious model. We evaluate this scheme on real DNA methylation data, and show that we can keep the computational overhead to acceptable values for our application scenario.