Visible to the public Biblio

Filters: Keyword is modular multilevel converter  [Clear All Filters]
2021-03-22
Yang, S., Liu, S., Huang, J., Su, H., Wang, H..  2020.  Control Conflict Suppressing and Stability Improving for an MMC Distributed Control System. IEEE Transactions on Power Electronics. 35:13735–13747.
Compared with traditional centralized control strategies, the distributed control systems significantly improve the flexibility and expandability of an modular multilevel converter (MMC). However, the stability issue in the MMC distributed control system with the presence of control loop coupling interactions is rarely discussed in existing research works. This article is to improve the stability of an MMC distributed control system by inhibiting the control conflict due to the coupling interactions among control loops with incomplete control information. By modeling the MMC distributed control system, the control loop coupling interactions are analyzed and the essential cause of control conflict is revealed. Accordingly, a control parameter design principle is proposed to effectively suppress the disturbances from the targeted control conflict and improve the MMC system stability. The rationality of the theoretical analysis and the effectiveness of the control parameter design principle are confirmed by simulation and experimental results.
2020-01-20
Yue, Lu, Yao, Xiu.  2019.  Sub-Modular Circuit Design for Self-Balancing Series-Connected IGBTs in a Modular Multilevel Converter. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). :3448–3452.

Series-connected IGBTs, when properly controlled, operate similarly to a single device with a much higher voltage capacity. Integrating series IGBTs into a Modular Multilevel Converter (MMC) can reduce its complexity without compromising the voltage capacity. This paper presents the circuit design on the sub-modular level of a MMC in which all the switching devices are series-connected IGBTs. The voltage sharing among the series IGBTs are regulated in a self-balancing manner. Therefore, no central series IGBT controller is needed, which greatly reduces the sensing and communication complexities, increasing the flexibility and expandability. Hardware experiment results demonstrate that the series IGBTs are able to self-regulate the voltage sharing in a fast and accurate manner and the system can operate similarly to a sub-module in a MMC.

2018-02-15
Wang, C., Lizana, F. R., Li, Z., Peterchev, A. V., Goetz, S. M..  2017.  Submodule short-circuit fault diagnosis based on wavelet transform and support vector machines for modular multilevel converter with series and parallel connectivity. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :3239–3244.

The modular multilevel converter with series and parallel connectivity was shown to provide advantages in several industrial applications. Its reliability largely depends on the absence of failures in the power semiconductors. We propose and analyze a fault-diagnosis technique to identify shorted switches based on features generated through wavelet transform of the converter output and subsequent classification in support vector machines. The multi-class support vector machine is trained with multiple recordings of the output of each fault condition as well as the converter under normal operation. Simulation results reveal that the proposed method has high classification latency and high robustness. Except for the monitoring of the output, which is required for the converter control in any case, this method does not require additional module sensors.