Visible to the public Biblio

Filters: Keyword is Cache replacement  [Clear All Filters]
2019-01-16
Akhtar, U., Lee, S..  2018.  Adaptive Cache Replacement in Efficiently Querying Semantic Big Data. 2018 IEEE International Conference on Web Services (ICWS). :367–370.
This paper addresses the problem of querying Knowledge bases (KBs) that store semantic big data. For efficiently querying data the most important factor is cache replacement policy, which determines the overall query response. As cache is limited in size, less frequently accessed data should be removed to provide more space to hot triples (frequently accessed). So, to achieve a similar performance to RDBMS, we proposed an Adaptive Cache Replacement (ACR) policy that predict the hot triples from query log. Moreover, performance bottleneck of triplestore, makes realworld application difficult. To achieve a closer performance similar to RDBMS, we have proposed an Adaptive Cache Replacement (ACR) policy that predict the hot triples from query log. Our proposed algorithm effectively replaces cache with high accuracy. To implement cache replacement policy, we have applied exponential smoothing, a forecast method, to collect most frequently accessed triples. The evaluation result shows that the proposed scheme outperforms the existing cache replacement policies, such as LRU (least recently used) and LFU (least frequently used), in terms of higher hit rates and less time overhead.
2018-02-21
Yan, Mengjia, Gopireddy, Bhargava, Shull, Thomas, Torrellas, Josep.  2017.  Secure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against Cache-Based Side Channel Atacks. Proceedings of the 44th Annual International Symposium on Computer Architecture. :347–360.
In cache-based side channel attacks, a spy that shares a cache with a victim probes cache locations to extract information on the victim's access patterns. For example, in evict+reload, the spy repeatedly evicts and then reloads a probe address, checking if the victim has accessed the address in between the two operations. While there are many proposals to combat these cache attacks, they all have limitations: they either hurt performance, require programmer intervention, or can only defend against some types of attacks. This paper makes the following observation for an environment with an inclusive cache hierarchy: when the spy evicts the probe address from the shared cache, the address will also be evicted from the private cache of the victim process, creating an inclusion victim. Consequently, to disable cache attacks, this paper proposes to alter the line replacement algorithm of the shared cache, to prevent a process from creating inclusion victims in the caches of cores running other processes. By enforcing this rule, the spy cannot evict the probe address from the shared cache and, hence, cannot glimpse any information on the victim's access patterns. We call our proposal SHARP (Secure Hierarchy-Aware cache Replacement Policy). SHARP efficiently defends against all existing cross-core shared-cache attacks, needs only minimal hardware modifications, and requires no code modifications. We implement SHARP in a cycle-level full-system simulator. We show that it protects against real-world attacks, and that it introduces negligible average performance degradation.