Visible to the public Biblio

Filters: Keyword is Force  [Clear All Filters]
2023-08-11
Skanda, C., Srivatsa, B., Premananda, B.S..  2022.  Secure Hashing using BCrypt for Cryptographic Applications. 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon). :1—5.
Impactful data breaches that exposed the online accounts and financial information of billions of individuals have increased recently because of the digitization of numerous industries. As a result, the need for comprehensive cybersecurity measures has risen, particularly with regard to the safekeeping of user passwords. Strong password storage security ensures that even if an attacker has access to compromised data, they are unable to utilize the passwords in attack vectors like credential-stuffing assaults. Additionally, it will reduce the risk of threats like fraudulent account charges or account takeovers for users. This study compares the performance of several hashing algorithms, including Bcrypt, SHA-256 and MD5 and how bcrypt algorithm outperforms the other algorithms. Reversal of each of the results will be attempted using Rainbow Tables for better understanding of hash reversals and the comparisons are tabulated. The paper provides a detail implementation of bcrypt algorithm and sheds light on the methodology of BCRYPT hashing algorithm results in robust password security. While SHA-256 hashing algorithms are, easily susceptible to simple attacks such as brute force as it a fast algorithm and making bcrypt more favorable.
Shafei, Raed.  2022.  Ibn Omar Hash Algorithm. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). :753—756.
A hash is a fixed-length output of some data that has been through a one-way function that cannot be reversed, called the hashing algorithm. Hashing algorithms are used to store secure information, such as passwords. They are stored as hashes after they have been through a hashing algorithm. Also, hashing algorithms are used to insure the checksum of certain data over the internet. This paper discusses how Ibn Omar's hashing algorithm will provide higher security for data than other hash functions used nowadays. Ibn Omar's hashing algorithm in produces an output of 1024 bits, four times as SHA256 and twice as SHA512. Ibn Omar's hashing algorithm reduces the vulnerability of a hash collision due to its size. Also, it would require enormous computational power to find a collision. There are eight salts per input. This hashing algorithm aims to provide high privacy and security for users.
Chethana, Savarala, Charan, Sreevathsa Sree, Srihitha, Vemula, Radha, D., Kavitha, C. R..  2022.  Comparative Analysis of Password Storage Security using Double Secure Hash Algorithm. 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon). :1—5.
Passwords are generally used to keep unauthorized users out of the system. Password hacking has become more common as the number of internet users has extended, causing a slew of issues. These problems include stealing the confidential information of a company or a country by adversaries which harm the economy or the security of the organization. Hackers often use password hacking for criminal activities. It is indispensable to protect passwords from hackers. There are many hacking methods such as credential stuffing, social engineering, traffic interception, and password spraying for hacking the passwords. So, in order to control hacking, there are hashing algorithms that are mostly used to hash passwords making password cracking more difficult. In this proposed work, different hashing algorithms such as SHA-1, MD-5, Salted MD-5, SHA-256, and SHA-512 have been used. And the MySQL database is used to store the hash values of passwords that are generated using various hash functions. It is proven that SHA is better than MD-5 and Salted MD-5. Whereas in the SHA family, SHA-512 and SHA-256 have their own benefits. Four new hashing functions have been proposed using the combination of existing algorithms like SHA-256, and SHA-512 namely SHA-256\_with\_SHA-256, SHA-256\_ With\_SHA-512,SHA-512\_With\_SHA-512,and SHA-512\_ With\_SHA-256. They provide strong hash value for passwords by which the security of passwords increases, and hacking can be controlled to an extent.
2023-07-14
Rui, Li, Liu, Jun, Lu, Miaoxia.  2022.  Security Authentication Scheme for Low Earth Orbit Satellites Based on Spatial Channel Characteristics. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :396–400.
Security authentication can effectively solve the problem of access to Low Earth Orbit (LEO) satellites. However, the existing solutions still harbor some problems in the computational complexity of satellite authentication, flexible networking, resistance to brute force attacks and other aspects. So, a security authentication scheme for LEO satellites that integrates spatial channel characteristics is designed within the software defined network architecture. In this scheme, the spatial channel characteristics are introduced to the subsequent lightweight encryption algorithm to achieve effective defense against brute force attacks. According to security analysis and simulation results, the scheme can effectively reduce the computational overhead while protecting against replay attacks, brute force attacks, DOS attacks, and other known attacks.
2023-04-28
Shakhov, Vladimir.  2022.  Sequential Statistical Analysis-Based Method for Attacks Detection in Cognitive Radio Networks. 2022 27th Asia Pacific Conference on Communications (APCC). :663–666.
This Cognitive radio networks are vulnerable to specific intrusions due to the unique cognitive characteristics of these networks. This DoS attacks are known as the Primary User Emulation Attack and the Spectrum Sensing Data Falsification. If the intruder behavior is not statistically identical to the behavior of the primary users, intrusion detection techniques based on observing the energy of the received signals can be used. Both machine learning-based intrusion detection and sequential statistical analysis can be effectively applied. However, in some cases, statistical sequential analysis has some advantages in dealing with such challenges. This paper discusses aspects of using statistical sequential analysis methods to detect attacks in Cognitive radio networks.
2023-04-14
T, Nirmalraj, Jebathangam, J..  2022.  A Novel Password Secure Mechanism using Reformation based Optimized Honey Encryption and Decryption Technique. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :877–880.
The exponential rise of online services has heightened awareness of safeguarding the various applications that cooperate with and provide Internet users. Users must present their credentials, such as user name and secret code, to the servers to be authorized. This sensitive data should be secured from being exploited due to numerous security breaches, resulting in criminal activity. It is vital to secure systems against numerous risks. This article offers a novel approach to protecting against brute force attacks. A solution is presented where the user obtains the keypad on each occurrence. Following the establishment of the keypad, the webserver produces an encrypted password for the user's Computer/device authentication. The encrypted password will be used for authentication; users must type the amended one-time password (OTP) every time they access the website. This research protects passwords using reformation-based encryption and decryption and optimal honey encryption (OH-E) and decryption.
ISSN: 2768-5330
Pahlevi, Rizka Reza, Suryani, Vera, Nuha, Hilal Hudan, Yasirandi, Rahmat.  2022.  Secure Two-Factor Authentication for IoT Device. 2022 10th International Conference on Information and Communication Technology (ICoICT). :407–412.
The development of IoT has penetrated various sectors. The development of IoT devices continues to increase and is predicted to reach 75 billion by 2025. However, the development of IoT devices is not followed by security developments. Therefore, IoT devices can become gateways for cyber attacks, including brute force and sniffing attacks. Authentication mechanisms can be used to ward off attacks. However, the implementation of authentication mechanisms on IoT devices is challenging. IoT devices are dominated by constraint devices that have limited computing. Thus, conventional authentication mechanisms are not suitable for use. Two-factor authentication using RFID and fingerprint can be a solution in providing an authentication mechanism. Previous studies have proposed a two-factor authentication mechanism using RFID and fingerprint. However, previous research did not pay attention to message exchange security issues and did not provide mutual authentication. This research proposes a secure mutual authentication protocol using two-factor RFID and fingerprint using MQTT protocol. Two processes support the authentication process: the registration process and authentication. The proposed protocol is tested based on biometric security by measuring the false acceptance rate (FAR) and false rejection rate (FRR) on the fingerprint, measuring brute force attacks, and measuring sniffing attacks. The test results obtained the most optimal FAR and FRR at the 80% threshold. Then the equal error rate (ERR) on FAR and FRR is around 59.5%. Then, testing brute force and sniffing attacks found that the proposed protocol is resistant to both attacks.
Qian, Jun, Gan, Zijie, Zhang, Jie, Bhunia, Suman.  2022.  Analyzing SocialArks Data Leak - A Brute Force Web Login Attack. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :21–27.
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
Wang, Bingyu, Sun, Qiuye, Fang, Fang.  2022.  Consensus-based Frequency Control of a Cyber-physical Power System under Two Types of DDoS Attacks. 2022 34th Chinese Control and Decision Conference (CCDC). :1060–1065.
The consensus-based frequency control relying on a communication system is used to restore the frequency deviations introduced by the primary droop control in an islanded AC microgrid, a typical cyber-physical power system(CPPS). This paper firstly studies the performance of the CPPS under two types of Distributed Denial of Service (DDoS ) attacks, finds that the intelligent attacks may cause more damage than the brute force attacks, and analyzes some potential defense strategies of the CPPS from two points of view. Some simulation results are also given to show the performance of both the physical and cyber system of the CPPS under different operation conditions.
ISSN: 1948-9447
Alcaraz-Velasco, Francisco, Palomares, José M., Olivares, Joaquín.  2022.  Analysis of the random shuffling of message blocks as a low-cost integrity and security measure. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Recently, a mechanism that randomly shuffles the data sent and allows securing the communication without the need to encrypt all the information has been proposed. This proposal is ideal for IoT systems with low computational capacity. In this work, we analyze the strength of this proposal from a brute-force attack approach to obtain the original message without knowledge of the applied disordering. It is demonstrated that for a set of 10x10 16-bit data, the processing time and the required memory are unfeasible with current technology. Therefore, it is safe.
ISSN: 2166-0727
Faircloth, Christopher, Hartzell, Gavin, Callahan, Nathan, Bhunia, Suman.  2022.  A Study on Brute Force Attack on T-Mobile Leading to SIM-Hijacking and Identity-Theft. 2022 IEEE World AI IoT Congress (AIIoT). :501–507.
The 2021 T-Mobile breach conducted by John Erin Binns resulted in the theft of 54 million customers' personal data. The attacker gained entry into T-Mobile's systems through an unprotected router and used brute force techniques to access the sensitive information stored on the internal servers. The data stolen included names, addresses, Social Security Numbers, birthdays, driver's license numbers, ID information, IMEIs, and IMSIs. We analyze the data breach and how it opens the door to identity theft and many other forms of hacking such as SIM Hijacking. SIM Hijacking is a form of hacking in which bad actors can take control of a victim's phone number allowing them means to bypass additional safety measures currently in place to prevent fraud. This paper thoroughly reviews the attack methodology, impact, and attempts to provide an understanding of important measures and possible defense solutions against future attacks. We also detail other social engineering attacks that can be incurred from releasing the leaked data.
AlShalaan, Manal, AlSubaie, Reem, Ara, Anees.  2022.  Secure Storage System Using Cryptographic Techniques. 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU). :138–142.
In the era of Internet usage growth, storage services are widely used where users' can store their data, while hackers techniques pose massive threats to users' data security. The proposed system introduces multiple layers of security where data confidentiality, integrity and availability are achieved using honey encryption, hashed random passwords as well as detecting intruders and preventing them. The used techniques can ensure security against brute force and denial of service attacks. Our proposed methodology proofs the efficiency for storing and retrieving data using honey words and password hashing with less execution time and more security features achieved compared with other systems. Other systems depend on user password leading to easily predict it, we avoid this approach by making the password given to the user is randomly generated which make it unpredictable and hard to break. Moreover, we created a simple user interface to interact with users to take their inputs and store them along with the given password in true database, if an adversary detected, he will be processed as a normal user but with fake information taken from another database called false database, after that, the admin will be notified about this illegitimate access by providing the IP address. This approach will make the admin have continuous detection and ensure availability and confidentiality. Our execution time is efficient as the encryption process takes 244 ms and decryption 229 ms.
Selvaganesh, M., Naveen Karthi, P., Nitish Kumar, V. A., Prashanna Moorthy, S. R..  2022.  Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :697–701.
A brute force is a Hacking methodology used to decrypt login passwords, keys and credentials. Hacks that exploit vulnerabilities in packages are rare, whereas Brute Force attacks aim to be the simplest, cheapest, and most straightforward approach to access a website. Using Splunk to analyse massive amounts of data could be very beneficial. The application enables to capture, search, and analyse log information in real-time. By analysing logs as well as many different sources of system information, security events can be uncovered. A log file, which details the events that have occurred in the environment of the application and the server on which they run, is a valuable piece of information. Identifying the attacks against these systems is possible by analysing and correlating this information. Massive amounts of ambiguous and amorphous information can be analysed with its superior resolution. The paper includes instructions on setting up a Splunk server and routing information there from multiple sources. Practical search examples and pre-built add-on applications are provided. Splunk is a powerful tool that allows users to explore big data with greater ease. Seizure can be tracked in near real-time and can be searched through logs. A short amount of time can be spent on analysing big data using map-reduce technology. Briefly, it helps to analyse unstructured log data to better understand how the applications operate. With Splunk, client can detect patterns in the data through a powerful query language. It is easy to set up alerts and warnings based on the queries, which will help alert client about an ongoing (suspected) activity and generate a notification in real-time.
Sadlek, Lukáš, Čeleda, Pavel, Tovarňák, Daniel.  2022.  Identification of Attack Paths Using Kill Chain and Attack Graphs. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–6.
The ever-evolving capabilities of cyber attackers force security administrators to focus on the early identification of emerging threats. Targeted cyber attacks usually consist of several phases, from initial reconnaissance of the network environment to final impact on objectives. This paper investigates the identification of multi-step cyber threat scenarios using kill chain and attack graphs. Kill chain and attack graphs are threat modeling concepts that enable determining weak security defense points. We propose a novel kill chain attack graph that merges kill chain and attack graphs together. This approach determines possible chains of attacker’s actions and their materialization within the protected network. The graph generation uses a categorization of threats according to violated security properties. The graph allows determining the kill chain phase the administrator should focus on and applicable countermeasures to mitigate possible cyber threats. We implemented the proposed approach for a predefined range of cyber threats, especially vulnerability exploitation and network threats. The approach was validated on a real-world use case. Publicly available implementation contains a proof-of-concept kill chain attack graph generator.
ISSN: 2374-9709
2023-03-31
Chapman, Jon, Venugopalan, Hari.  2022.  Open Source Software Computed Risk Framework. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). :172–175.
The increased dissemination of open source software to a broader audience has led to a proportional increase in the dissemination of vulnerabilities. These vulnerabilities are introduced by developers, some intentionally or negligently. In this paper, we work to quantity the relative risk that a given developer represents to a software project. We propose using empirical software engineering based analysis on the vast data made available by GitHub to create a Developer Risk Score (DRS) for prolific contributors on GitHub. The DRS can then be aggregated across a project as a derived vulnerability assessment, we call this the Computational Vulnerability Assessment Score (CVAS). The CVAS represents the correlation between the Developer Risk score across projects and vulnerabilities attributed to those projects. We believe this to be a contribution in trying to quantity risk introduced by specific developers across open source projects. Both of the risk scores, those for contributors and projects, are derived from an amalgamation of data, both from GitHub and outside GitHub. We seek to provide this risk metric as a force multiplier for the project maintainers that are responsible for reviewing code contributions. We hope this will lead to a reduction in the number of introduced vulnerabilities for projects in the Open Source ecosystem.
ISSN: 2766-3639
2023-03-17
Agarwal, Reshu, Chaudhary, Alka, Gupta, Deepa, Das, Devleen.  2022.  Ransomware Vulnerability used in darknet for web application attack. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1–5.
Cyber security is turning into a significant angle in each industry like in banking part, force and computerization segments. Servers are basic resources in these enterprises where business basic touch information is put away. These servers frequently join web servers in them through which any business information and tasks are performed remotely. Thus, clearly for a solid activity, security of web servers is extremely basic. This paper gives another testing way to deal with defenselessness appraisal of web applications by methods for breaking down and utilizing a consolidated arrangement of apparatuses to address a wide scope of security issues.
2023-02-17
Heseding, Hauke, Zitterbart, Martina.  2022.  ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :106–113.
Volumetric Distributed Denial of Service attacks forcefully disrupt the availability of online services by congesting network links with arbitrary high-volume traffic. This brute force approach has collateral impact on the upstream network infrastructure, making early attack traffic removal a key objective. To reduce infrastructure load and maintain service availability, we introduce ReCEIF, a topology-independent mitigation strategy for early, rule-based ingress filtering leveraging deep reinforcement learning. ReCEIF utilizes hierarchical heavy hitters to monitor traffic distribution and detect subnets that are sending high-volume traffic. Deep reinforcement learning subsequently serves to refine hierarchical heavy hitters into effective filter rules that can be propagated upstream to discard traffic originating from attacking systems. Evaluating all filter rules requires only a single clock cycle when utilizing fast ternary content-addressable memory, which is commonly available in software defined networks. To outline the effectiveness of our approach, we conduct a comparative evaluation to reinforcement learning-based router throttling.
2023-02-03
Zhu, Feng, Shen, Peisong, Chen, Kaini, Ma, Yucheng, Chen, Chi.  2022.  A Secure and Practical Sample-then-lock Scheme for Iris Recognition. 2022 26th International Conference on Pattern Recognition (ICPR). :833–839.
Sample-then-lock construction is a reusable fuzzy extractor for low-entropy sources. When applied on iris recognition scenarios, many subsets of an iris-code are used to lock the cryptographic key. The security of this construction relies on the entropy of subsets of iris codes. Simhadri et al. reported a security level of 32 bits on iris sources. In this paper, we propose two kinds of attacks to crack existing sample-then-lock schemes. Exploiting the low-entropy subsets, our attacks can break the locked key and the enrollment iris-code respectively in less than 220 brute force attempts. To protect from these proposed attacks, we design an improved sample-then-lock scheme. More precisely, our scheme employs stability and discriminability to select high-entropy subsets to lock the genuine secret, and conceals genuine locker by a large amount of chaff lockers. Our experiment verifies that existing schemes are vulnerable to the proposed attacks with a security level of less than 20 bits, while our scheme can resist these attacks with a security level of more than 100 bits when number of genuine subsets is 106.
ISSN: 2831-7475
Nie, Chenyang, Quinan, Paulo Gustavo, Traore, Issa, Woungang, Isaac.  2022.  Intrusion Detection using a Graphical Fingerprint Model. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :806–813.
The Activity and Event Network (AEN) graph is a new framework that allows modeling and detecting intrusions by capturing ongoing security-relevant activity and events occurring at a given organization using a large time-varying graph model. The graph is generated by processing various network security logs, such as network packets, system logs, and intrusion detection alerts. In this paper, we show how known attack methods can be captured generically using attack fingerprints based on the AEN graph. The fingerprints are constructed by identifying attack idiosyncrasies under the form of subgraphs that represent indicators of compromise (IOes), and then encoded using Property Graph Query Language (PGQL) queries. Among the many attack types, three main categories are implemented as a proof of concept in this paper: scanning, denial of service (DoS), and authentication breaches; each category contains its common variations. The experimental evaluation of the fingerprints was carried using a combination of intrusion detection datasets and yielded very encouraging results.
2023-01-20
Milov, Oleksandr, Khvostenko, Vladyslav, Natalia, Voropay, Korol, Olha, Zviertseva, Nataliia.  2022.  Situational Control of Cyber Security in Socio-Cyber-Physical Systems. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–6.

The features of socio-cyber-physical systems are presented, which dictate the need to revise traditional management methods and transform the management system in such a way that it takes into account the presence of a person both in the control object and in the control loop. The use of situational control mechanisms is proposed. The features of this approach and its comparison with existing methods of situational awareness are presented. The comparison has demonstrated wider possibilities and scope for managing socio-cyber-physical systems. It is recommended to consider a wider class of types of relations that exist in socio-cyber-physical systems. It is indicated that such consideration can be based on the use of pseudo-physical logics considered in situational control. It is pointed out that it is necessary to design a classifier of situations (primarily in cyberspace), instead of traditional classifiers of threats and intruders.

2023-01-13
Kiratsata, Harsh J., Raval, Deep P., Viras, Payal K., Lalwani, Punit, Patel, Himanshu, D., Panchal S..  2022.  Behaviour Analysis of Open-Source Firewalls Under Security Crisis. 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :105—109.
Nowadays, in this COVID era, work from home is quietly more preferred than work from the office. Due to this, the need for a firewall has been increased day by day. Every organization uses the firewall to secure their network and create VPN servers to allow their employees to work from home. Due to this, the security of the firewall plays a crucial role. In this paper, we have compared the two most popular open-source firewalls named pfSense and OPNSense. We have examined the security they provide by default without any other attachment. To do this, we performed four different attacks on the firewalls and compared the results. As a result, we have observed that both provide the same security still pfSense has a slight edge when an attacker tries to perform a Brute force attack over OPNSense.
2022-12-09
Gualandi, Gabriele, Maggio, Martina, Vittorio Papadopoulos, Alessandro.  2022.  Optimization-based attack against control systems with CUSUM-based anomaly detection. 2022 30th Mediterranean Conference on Control and Automation (MED). :896—901.
Security attacks on sensor data can deceive a control system and force the physical plant to reach an unwanted and potentially dangerous state. Therefore, attack detection mechanisms are employed in cyber-physical control systems to detect ongoing attacks, the most prominent one being a threshold-based anomaly detection method called CUSUM. Literature defines the maximum impact of stealth attacks as the maximum deviation in the plant’s state that an undetectable attack can introduce, and formulates it as an optimization problem. This paper proposes an optimization-based attack with different saturation models, and it investigates how the attack duration significantly affects the impact of the attack on the state of the plant. We show that more dangerous attacks can be discovered when allowing saturation of the control system actuators. The proposed approach is compared with the geometric attack, showing how longer attack durations can lead to a greater impact of the attack while keeping the attack stealthy.
2022-11-18
Li, Shuang, Zhang, Meng, Li, Che, Zhou, Yue, Wang, Kanghui, Deng, Yaru.  2021.  Mobile APP Personal Information Security Detection and Analysis. 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS). :82—87.
Privacy protection is a vital part of information security. However, the excessive collections and uses of personal information have intensified in the area of mobile apps (applications). To comprehend the current situation of APP personal information security problem of APP, this paper uses a combined approach of static analysis technology, dynamic analysis technology, and manual review to detect and analyze the installed file of mobile apps. 40 mobile apps are detected as experimental samples. The results demonstrate that this combined approach can effectively detect various issues of personal information security problem in mobile apps. Statistics analysis of the experimental results demonstrate that mobile apps have outstanding problems in some aspects of personal information security such as privacy policy, permission application, information collection, data storage, etc.
2022-11-02
Zhao, Li, Jiao, Yan, Chen, Jie, Zhao, Ruixia.  2021.  Image Style Transfer Based on Generative Adversarial Network. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–195.
Image style transfer refers to the transformation of the style of image, so that the image details are retained to the maximum extent while the style is transferred. Aiming at the problem of low clarity of style transfer images generated by CycleGAN network, this paper improves the CycleGAN network. In this paper, the network model of auto-encoder and variational auto-encoder is added to the structure. The encoding part of the auto-encoder is used to extract image content features, and the variational auto-encoder is used to extract style features. At the same time, the generating network of the model in this paper uses first to adjust the image size and then perform the convolution operation to replace the traditional deconvolution operation. The discriminating network uses a multi-scale discriminator to force the samples generated by the generating network to be more realistic and approximate the target image, so as to improve the effect of image style transfer.
2022-08-26
Williams, Adam D., Birch, Gabriel C..  2020.  A Multiplex Complex Systems Model for Engineering Security Systems. 2020 IEEE Systems Security Symposium (SSS). :1–8.
Existing security models are highly linear and fail to capture the rich interactions that occur across security technology, infrastructure, cybersecurity, and human/organizational components. In this work, we will leverage insights from resilience science, complex system theory, and network theory to develop a next-generation security model based on these interactions to address challenges in complex, nonlinear risk environments and against innovative and disruptive technologies. Developing such a model is a key step forward toward a dynamic security paradigm (e.g., shifting from detection to anticipation) and establishing the foundation for designing next-generation physical security systems against evolving threats in uncontrolled or contested operational environments.