Biblio
We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.
In medical human-robot interactions, trust plays an important role since for patients there may be more at stake than during other kinds of encounters with robots. In the current study, we address issues of trust in the interaction with a prototype of a therapeutic robot, the Universal RoboTrainer, in which the therapist records patient-specific tasks for the patient by means of kinesthetic guidance of the patients arm, which is connected to the robot. We carried out a user study with twelve pairs of participants who collaborate on recording a training program on the robot. We examine a) the degree with which participants identify the situation as uncomfortable or distressing, b) participants' own strategies to mitigate that stress, c) the degree to which the robot is held responsible for the problems occurring and the amount of agency ascribed to it, and d) when usability issues arise, what effect these have on participants' trust. We find signs of distress mostly in contexts with usability issues, as well as many verbal and kinesthetic mitigation strategies intuitively employed by the participants. Recommendations for robots to increase users' trust in kinesthetic interactions include the timely production of verbal cues that continuously confirm that everything is alright as well as increased contingency in the presentation of strategies for recovering from usability issues arising.
This Innovative Practice Work in Progress paper makes the case for using concept inventories in cybersecurity education and presents an example of the development of a concept inventory in the field of secure programming. The secure programming concept inventory is being developed by a team of researchers from four universities. We used a Delphi study to define the content area to be covered by the concept inventory. Participants in the Delphi study included ten experts from academia, government, and industry. Based on the results, we constructed a concept map of secure programming concepts. We then compared this concept map to the Joint Task Force on Cybersecurity Education Curriculum 2017 guidelines to ensure complete coverage of secure programming concepts. Our mapping indicates a substantial match between the concept map and those guidelines.
The spotlight is on cybersecurity education programs to develop a qualified cybersecurity workforce to meet the demand of the professional field. The ACM CCECC (Committee for Computing Education in Community Colleges) is leading the creation of a set of guidelines for associate degree cybersecurity programs called Cyber2yr, formerly known as CSEC2Y. A task force of community college educators have created a student competency focused curriculum that will serve as a global cybersecurity guide for applied (AAS) and transfer (AS) degree programs to develop a knowledgeable and capable associate level cybersecurity workforce. Based on the importance of the Cyber2yr work; ABET a nonprofit, non-governmental agency that accredits computing programs has created accreditation criteria for two-year cybersecurity programs.
A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.
Interior permanent magnet (IPM)-type linear oscillating actuators (LOAs) have a higher output power density than typical LOAs. Their mover consists of a permanent magnet (PM) and an iron core, however, this configuration generates significant side forces. The device can malfunction due to eccentricity in the electromagnetic behavior. Thus, here an electromagnetic design was developed to minimize this side force. In addition, dynamic analysis was performed considering the mechanical systems of LOAs. To perform a more accurate analysis, instantaneous inductance was considered according to the mover's position.
The aim of this paper is to explore the performance of two well-known wave energy converters (WECs) namely Floating Buoy Point Absorber (FBPA) and Oscillating Surge (OS) in onshore and offshore locations. To achieve clean energy targets by reducing greenhouse gas emissions, integration of renewable energy resources is continuously increasing all around the world. In addition to widespread renewable energy source such as wind and solar photovoltaic (PV), wave energy extracted from ocean is becoming more tangible day by day. In the literature, a number of WEC devices are reported. However, further investigations are still needed to better understand the behaviors of FBPA WEC and OS WEC under irregular wave conditions in onshore and offshore locations. Note that being surrounded by Bay of Bengal, Bangladesh has huge scope of utilizing wave power. To this end, FBPA WEC and OS WEC are simulated using the typical onshore and offshore wave height and wave period of the coastal area of Bangladesh. Afterwards, performances of the aforementioned two WECs are compared by analyzing their power output.
Linear oscillating actuators are emerging electrical motors applied to direct-drive electromechanical systems. They merit high efficiency and quick dynamical property due to the unique structure of spring oscillator. Resonant principle is the base of their high performance, which however, is easily influenced by various load, complex environment and mechanical failure. This paper studies the modeling of linear oscillating actuators in multi-work condition. Three kinds of load are considered in performance evaluation model. Simulations are conducted at different frequencies to obtain the actuator behavior, especially at non-resonance frequencies. A method of constant impedance angle is proposed to search the best working points in sorts of conditions. Eventually, analytical results reflect that the resonant parameter would drift with load, while linear oscillating actuators exhibits robustness in efficiency performance. Several evaluating parameters are concluded to assess the actuator health status.
In this paper we propose a solution to support iOS developers in creating better applications, to use static analysis to investigate source code and detect secure coding issues while simultaneously pointing out good practices and/or secure APIs they should use.
Cybersecurity in control systems has been actively discussed in recent years. In particular, networked control systems (NCSs) over the Internet are exposed to various types of cyberattacks such as false data injection attacks. This paper proposes a detection and mitigation method of the false data injection attacks in interactive NCSs, i.e., bilateral teleoperation systems. A bilateral teleoperation system exchanges position and force information through the Internet between the master and slave robots. The proposed method utilizes two redundant communication channels for both the master-to-slave and slave-to-master paths. The attacks are detected by a tamper detection observer (TDO) on each of the master and slave sides. The TDO compares the position responses of actual robots and robot models. A path selector on each side chooses the appropriate position and force responses from the responses received through the two communication channels, based on the outputs of the TDO. The proposed method is validated by simulations with attack models.
In Diffie-Hellman Key Exchange (DHKE), two parties need to communicate to each other by sharing their secret key (cipher text) over an unsecure communication channel. An adversary or cryptanalyst can easily get their secret keys but cannot get the information (plaintext). Brute force is one the common tools used to obtain the secret key, but when the key is too large (etc. 1024 bits and 2048 bits) this tool is no longer suitable. Thus timing attacks have become more attractive in the new cryptographic era where networked embedded systems security present several vulnerabilities such as lower processing power and high deployment scale. Experiments on timing attacks are useful in helping cryptographers make security schemes more resistant. In this work, we timed the computations of the Discrete Log Hard Problem of the Diffie Hellman Key Exchange (DHKE) protocol implemented on an embedded system network and analyzed the timing patterns of 1024-bit and 2048-bit keys that was obtained during the attacks. We have chosen to implement the protocol on the Raspberry-pi board over U-BOOT Bare Metal and we used the GMP bignum library to compute numbers greater than 64 bits on the embedded system.
Distributed Denial of Service (DDoS) attacks have two defense perspectives firstly, to defend your network, resources and other information assets from this disastrous attack. Secondly, to prevent your network to be the part of botnet (botforce) bondage to launch attacks on other networks and resources mainly be controlled from a control center. This work focuses on the development of a botnet prevention system for Internet of Things (IoT) that uses the benefits of both Software Defined Networking (SDN) and Distributed Blockchain (DBC). We simulate and analyze that using blockchain and SDN, how can detect and mitigate botnets and prevent our devices to play into the hands of attackers.
To decouple the multi-axis motion in the 6 degrees of freedom magnetically levitated actuators (MLAs), this paper introduces a numerical method to model the force and torque distribution. Taking advantage of the Gaussian quadrature, the concept of coil node is developed to simplify the Lorentz integral into the summation of the interaction between each magnetic node in the remanence region and each coil node in the coil region. Utilizing the coordinate transformation in the numerical method, the computation burden is independent of the position and the rotation angle of the moving part. Finally, the experimental results prove that the force and torque predicted by the numerical model are rigidly consistent with the measurement, and the force and torque in all directions are decoupled properly based on the numerical solution. Compared with the harmonic model, the numerical wrench model is more suitable for the MLAs undertaking both the translational and rotational displacements.