Biblio
The increasing publication of large amounts of data, theoretically anonymous, can lead to a number of attacks on the privacy of people. The publication of sensitive data without exposing the data owners is generally not part of the software developers concerns. The regulations for the data privacy-preserving create an appropriate scenario to focus on privacy from the perspective of the use or data exploration that takes place in an organization. The increasing number of sanctions for privacy violations motivates the systematic comparison of three known machine learning algorithms in order to measure the usefulness of the data privacy preserving. The scope of the evaluation is extended by comparing them with a known privacy preservation metric. Different parameter scenarios and privacy levels are used. The use of publicly available implementations, the presentation of the methodology, explanation of the experiments and the analysis allow providing a framework of work on the problem of the preservation of privacy. Problems are shown in the measurement of the usefulness of the data and its relationship with the privacy preserving. The findings motivate the need to create optimized metrics on the privacy preferences of the owners of the data since the risks of predicting sensitive attributes by means of machine learning techniques are not usually eliminated. In addition, it is shown that there may be a hundred percent, but it cannot be measured. As well as ensuring adequate performance of machine learning models that are of interest to the organization that data publisher.
Recent years have witnessed the trend of increasingly relying on distributed infrastructures. This increased the number of reported incidents of security breaches compromising users' privacy, where third parties massively collect, process and manage users' personal data. Towards these security and privacy challenges, we combine hierarchical identity based cryptographic mechanisms with emerging blockchain infrastructures and propose a blockchain-based data usage auditing architecture ensuring availability and accountability in a privacy-preserving fashion. Our approach relies on the use of auditable contracts deployed in blockchain infrastructures. Thus, it offers transparent and controlled data access, sharing and processing, so that unauthorized users or untrusted servers cannot process data without client's authorization. Moreover, based on cryptographic mechanisms, our solution preserves privacy of data owners and ensures secrecy for shared data with multiple service providers. It also provides auditing authorities with tamper-proof evidences for data usage compliance.
Cloud computing offers many advantages as flexibility or resource efficiency and can significantly reduce costs. However, when sensitive data is outsourced to a cloud provider, classified records can leak. To protect data owners and application providers from a privacy breach data must be encrypted before it is uploaded. In this work, we present a distributed key management scheme that handles user-specific keys in a single-tenant scenario. The underlying database is encrypted and the secret key is split into parts and only reconstructed temporarily in memory. Our scheme distributes shares of the key to the different entities. We address bootstrapping, key recovery, the adversary model and the resulting security guarantees.