Visible to the public Biblio

Found 478 results

Filters: Keyword is Big Data  [Clear All Filters]
2023-09-18
Warmsley, Dana, Waagen, Alex, Xu, Jiejun, Liu, Zhining, Tong, Hanghang.  2022.  A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. 2022 IEEE International Conference on Big Data (Big Data). :2932—2939.
Malicious cybersecurity activities have become increasingly worrisome for individuals and companies alike. While machine learning methods like Graph Neural Networks (GNNs) have proven successful on the malware detection task, their output is often difficult to understand. Explainable malware detection methods are needed to automatically identify malicious programs and present results to malware analysts in a way that is human interpretable. In this survey, we outline a number of GNN explainability methods and compare their performance on a real-world malware detection dataset. Specifically, we formulated the detection problem as a graph classification problem on the malware Control Flow Graphs (CFGs). We find that gradient-based methods outperform perturbation-based methods in terms of computational expense and performance on explainer-specific metrics (e.g., Fidelity and Sparsity). Our results provide insights into designing new GNN-based models for cyber malware detection and attribution.
2023-09-08
Miao, Yu.  2022.  Construction of Computer Big Data Security Technology Platform Based on Artificial Intelligence. 2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE). :1–4.
Artificial technology developed in recent years. It is an intelligent system that can perform tasks without human intervention. AI can be used for various purposes, such as speech recognition, face recognition, etc. AI can be used for good or bad purposes, depending on how it is implemented. The discuss the application of AI in data security technology and its advantages over traditional security methods. We will focus on the good use of AI by analyzing the impact of AI on the development of big data security technology. AI can be used to enhance security technology by using machine learning algorithms, which can analyze large amounts of data and identify patterns that cannot be detected automatically by humans. The computer big data security technology platform based on artificial intelligence in this paper is the process of creating a system that can identify and prevent malicious programs. The system must be able to detect all types of threats, including viruses, worms, Trojans and spyware. It should also be able to monitor network activity and respond quickly in the event of an attack.
Sengul, M. Kutlu, Tarhan, Cigdem, Tecim, Vahap.  2022.  Application of Intelligent Transportation System Data using Big Data Technologies. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–6.
Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
ISSN: 2770-7946
Hamdaoui, Ikram, Fissaoui, Mohamed El, Makkaoui, Khalid El, Allali, Zakaria El.  2022.  An intelligent traffic monitoring approach based on Hadoop ecosystem. 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS). :1–6.
Nowadays, smart cities (SCs) use technologies and different types of data collected to improve the lifestyles of their citizens. Indeed, connected smart vehicles are technologies used for an SC’s intelligent traffic monitoring systems (ITMSs). However, most proposed monitoring approaches do not consider realtime monitoring. This paper presents real-time data processing for an intelligent traffic monitoring dashboard using the Hadoop ecosystem dashboard components. Many data are available due to our proposed monitoring approach, such as the total number of vehicles on different routes and data on trucks within a radius (10KM) of a specific point given. Based on our generated data, we can make real-time decisions to improve circulation and optimize traffic flow.
2023-09-01
Shang, Siyuan, Zhou, Aoyang, Tan, Ming, Wang, Xiaohan, Liu, Aodi.  2022.  Access Control Audit and Traceability Forensics Technology Based on Blockchain. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). :932—937.
Access control includes authorization of security administrators and access of users. Aiming at the problems of log information storage difficulty and easy tampering faced by auditing and traceability forensics of authorization and access in cross-domain scenarios, we propose an access control auditing and traceability forensics method based on Blockchain, whose core is Ethereum Blockchain and IPFS interstellar mail system, and its main function is to store access control log information and trace forensics. Due to the technical characteristics of blockchain, such as openness, transparency and collective maintenance, the log information metadata storage based on Blockchain meets the requirements of distribution and trustworthiness, and the exit of any node will not affect the operation of the whole system. At the same time, by storing log information in the blockchain structure and using mapping, it is easy to locate suspicious authorization or judgment that lead to permission leakage, so that security administrators can quickly grasp the causes of permission leakage. Using this distributed storage structure for security audit has stronger anti-attack and anti-risk.
2023-08-25
Zheng, Chaofan, Hu, Wenhui, Li, Tianci, Liu, Xueyang, Zhang, Jinchan, Wang, Litian.  2022.  An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.
2023-08-16
Waluyo, Adam, Cahyono, M.T. Setiyo, Mahfud, Ahmad Zainudin.  2022.  Digital Forensic Analysis on Caller ID Spoofing Attack. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :95—100.
Misuse of caller ID spoofing combined with social engineering has the potential as a means to commit other crimes, such as fraud, theft, leaking sensitive information, spreading hoaxes, etc. The appropriate forensic technique must be carried out to support the verification and collection of evidence related to these crimes. In this research, a digital forensic analysis was carried out on the BlueStacks emulator, Redmi 5A smartphone, and SIM card which is a device belonging to the victim and attacker to carry out caller ID spoofing attacks. The forensic analysis uses the NIST SP 800-101 R1 guide and forensic tools FTK imager, Oxygen Forensic Detective, and Paraben’s E3. This research aims to determine the artifacts resulting from caller ID spoofing attacks to assist in mapping and finding digital evidence. The result of this research is a list of digital evidence findings in the form of a history of outgoing calls, incoming calls, caller ID from the source of the call, caller ID from the destination of the call, the time the call started, the time the call ended, the duration of the call, IMSI, ICCID, ADN, and TMSI.
2023-08-11
Zhu, Haiting, Wan, Junmei, Li, Nan, Deng, Yingying, He, Gaofeng, Guo, Jing, Zhang, Lu.  2022.  Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.
2023-08-03
Feng, Jiayi.  2022.  Generative Adversarial Networks for Remote Sensing. 2022 2nd International Conference on Big Data, Artificial Intelligence and Risk Management (ICBAR). :108–112.
Generative adversarial networks (GANs) have been increasingly popular among deep learning methods. With many GANs-based models developed since its emergence, among which are conditional generative adversarial networks, progressive growing of generative adversarial networks, Wasserstein generative adversarial networks and so on. These frameworks are currently widely applied in areas such as remote sensing cybersecurity, medical, and architecture. Especially, they have solved problems of cloud removal, semantic segmentation, image-to-image translation and data argumentation in remote sensing. For example, WGANs and ProGANs can be applied in data argumentation, and cGANs can be applied in semantic argumentation and image-to-image translation. This article provides an overview of structures of multiple GANs-based models and what areas they can be applied in remote sensing.
2023-07-31
Guo, Yaqiong, Zhou, Peng, Lu, Xin, Sun, Wangshu, Sun, Jiasai.  2022.  A Fuzzy Multi-Identity Based Signature. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :219—223.
Identity based digital signature is an important research topic of public key cryptography, which can effectively guarantee the authentication, integrity and unforgeability of data. In this paper, a new fuzzy multi-identity based signature scheme is proposed. It is proved that the scheme is existentially unforgeable against adaptively chosen message attack, and the security of the signature scheme can be reduced to CDH assumption. The storage cost and the communication overhead are small, therefore the new fuzzy multi-identity based signature (FMIBS) scheme can be implemented efficiently.
2023-07-21
Yu, Jinhe, Liu, Wei, Li, Yue, Zhang, Bo, Yao, Wenjian.  2022.  Anomaly Detection of Power Big Data Based on Improved Support Vector Machine. 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). :102—105.
To reduce the false negative rate in power data anomaly detection, enhance the overall detection accuracy and reliability, and create a more stable data detection environment, this paper designs a power big data anomaly detection method based on improved support vector machine technology. The abnormal features are extracted in advance, combined with the changes of power data, the multi-target anomaly detection nodes are laid, and on this basis, the improved support vector machine anomaly detection model is constructed. The anomaly detection is realized by combining the normalization processing of the equivalent vector. The final test results show that compared with the traditional clustering algorithm big data anomaly detection test group and the traditional multi-domain feature extraction big data anomaly detection test group, the final false negative rate of the improved support vector machine big data exception detection test group designed in this paper is only 2.04, which shows that the effect of the anomaly detection method is better. It is more accurate and reliable for testing in a complex power environment and has practical application value.
Liao, Mancheng.  2022.  Establishing a Knowledge Base of an Expert System for Criminal Investigation. 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :562—566.
In the information era, knowledge is becoming increasingly significant for all industries, especially criminal investigation that deeply relies on intelligence and strategies. Therefore, there is an urgent need for effective management and utilization of criminal investigation knowledge. As an important branch of knowledge engineering, the expert system can simulate the thinking pattern of an expert, proposing strategies and solutions based on the knowledge stored in the knowledge base. A crucial step in building the expert system is to construct the knowledge base, which determines the function and capability of the expert system. This paper establishes a practical knowledge base for criminal investigation, combining the technologies of cloud computing with traditional method of manual entry to acquire and process knowledge. The knowledge base covers data information and expert knowledge with detailed classification of rules and cases, providing answers through comparison and reasoning. The knowledge becomes more accurate and reliable after repeated inspection and verification by human experts.
2023-07-19
Voulgaris, Konstantinos, Kiourtis, Athanasios, Karamolegkos, Panagiotis, Karabetian, Andreas, Poulakis, Yannis, Mavrogiorgou, Argyro, Kyriazis, Dimosthenis.  2022.  Data Processing Tools for Graph Data Modelling Big Data Analytics. 2022 13th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter). :208—212.
Any Big Data scenario eventually reaches scalability concerns for several factors, often storage or computing power related. Modern solutions have been proven to be effective in multiple domains and have automated many aspects of the Big Data pipeline. In this paper, we aim to present a solution for deploying event-based automated data processing tools for low code environments that aim to minimize the need for user input and can effectively handle common data processing jobs, as an alternative to distributed solutions which require language specific libraries and code. Our architecture uses a combination of a network exposed service with a cluster of “Data Workers” that handle data processing jobs effectively without requiring manual input from the user. This system proves to be effective at handling most data processing scenarios and allows for easy expandability by following simple patterns when declaring any additional jobs.
2023-06-30
Kai, Liu, Jingjing, Wang, Yanjing, Hu.  2022.  Localized Differential Location Privacy Protection Scheme in Mobile Environment. 2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI). :148–152.
When users request location services, they are easy to expose their privacy information, and the scheme of using a third-party server for location privacy protection has high requirements for the credibility of the server. To solve these problems, a localized differential privacy protection scheme in mobile environment is proposed, which uses Markov chain model to generate probability transition matrix, and adds Laplace noise to construct a location confusion function that meets differential privacy, Conduct location confusion on the client, construct and upload anonymous areas. Through the analysis of simulation experiments, the scheme can solve the problem of untrusted third-party server, and has high efficiency while ensuring the high availability of the generated anonymous area.
2023-06-23
Angiulli, Fabrizio, Furfaro, Angelo, Saccá, Domenico, Sacco, Ludovica.  2022.  Evaluating Deep Packet Inspection in Large-scale Data Processing. 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud). :16–23.
The Internet has evolved to the point that gigabytes and even terabytes of data are generated and processed on a daily basis. Such a stream of data is characterised by high volume, velocity and variety and is referred to as Big Data. Traditional data processing tools can no longer be used to process big data, because they were not designed to handle such a massive amount of data. This problem concerns also cyber security, where tools like intrusion detection systems employ classification algorithms to analyse the network traffic. Achieving a high accuracy attack detection becomes harder when the amount of data increases and the algorithms must be efficient enough to keep up with the throughput of a huge data stream. Due to the challenges posed by a big data environment, some monitoring systems have already shifted from deep packet inspection to flow-level inspection. The goal of this paper is to evaluate the applicability of an existing intrusion detection technique that performs deep packet inspection in a big data setting. We have conducted several experiments with Apache Spark to assess the performance of the technique when classifying anomalous packets, showing that it benefits from the use of Spark.
2023-06-22
Jamil, Huma, Liu, Yajing, Cole, Christina, Blanchard, Nathaniel, King, Emily J., Kirby, Michael, Peterson, Christopher.  2022.  Dual Graphs of Polyhedral Decompositions for the Detection of Adversarial Attacks. 2022 IEEE International Conference on Big Data (Big Data). :2913–2921.
Previous work has shown that a neural network with the rectified linear unit (ReLU) activation function leads to a convex polyhedral decomposition of the input space. These decompositions can be represented by a dual graph with vertices corresponding to polyhedra and edges corresponding to polyhedra sharing a facet, which is a subgraph of a Hamming graph. This paper illustrates how one can utilize the dual graph to detect and analyze adversarial attacks in the context of digital images. When an image passes through a network containing ReLU nodes, the firing or non-firing at a node can be encoded as a bit (1 for ReLU activation, 0 for ReLU non-activation). The sequence of all bit activations identifies the image with a bit vector, which identifies it with a polyhedron in the decomposition and, in turn, identifies it with a vertex in the dual graph. We identify ReLU bits that are discriminators between non-adversarial and adversarial images and examine how well collections of these discriminators can ensemble vote to build an adversarial image detector. Specifically, we examine the similarities and differences of ReLU bit vectors for adversarial images, and their non-adversarial counterparts, using a pre-trained ResNet-50 architecture. While this paper focuses on adversarial digital images, ResNet-50 architecture, and the ReLU activation function, our methods extend to other network architectures, activation functions, and types of datasets.
2023-06-16
Haifeng, Ma, Ji, Zhang.  2022.  Block-chain based cloud storage integrity verifycation scheme for recoverable data. 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS). 7:280—285.
With the advent of the era of big data, the files that need to be stored in the storage system will increase exponentially. Cloud storage has become the most popular data storage method due to its powerful convenience and storage capacity. However, in order to save costs, some cloud service providers, Malicious deletion of the user's infrequently accessed data causes the user to suffer losses. Aiming at data integrity and privacy issues, a blockchain-based cloud storage integrity verification scheme for recoverable data is proposed. The scheme uses the Merkle tree properties, anonymity, immutability and smart contracts of the blockchain to effectively solve the problems of cloud storage integrity verification and data damage recovery, and has been tested and analyzed that the scheme is safe and effective.
Yang, Di, Wang, Lianfa, Zhang, Yufeng.  2022.  Research on the Application of Computer Big Data Technology in the Health Monitoring of the Bridge Body of Cross-river Bridge. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1516—1520.
This article proposes a health monitoring system platform for cross-river bridges based on big data. The system can realize regionalized bridge operation and maintenance management. The system has functions such as registration modification and deletion of sensor equipment, user registration modification and deletion, real-time display and storage of sensor monitoring data, and evaluation and early warning of bridge structure safety. The sensor is connected to the lower computer through the serial port, analog signal, fiber grating signal, etc. The lower computer converts a variety of signals into digital signals through the single-chip A/D sampling and demodulator, etc., and transmits it to the upper computer through the serial port. The upper computer uses ARMCortex-A9 Run the main program to realize multi-threaded network communication. The system platform is to test the validity of the model, and a variety of model verification methods are used for evaluation to ensure the reliability of the big data analysis method.
Ren, Lijuan, Wang, Tao, Seklouli, Aicha Sekhari, Zhang, Haiqing, Bouras, Abdelaziz.  2022.  Missing Values for Classification of Machine Learning in Medical data. 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD). :101—106.
Missing values are an unavoidable problem for classification tasks of machine learning in medical data. With the rapid development of the medical system, large scale medical data is increasing. Missing values increase the difficulty of mining hidden but useful information in these medical datasets. Deletion and imputation methods are the most popular methods for dealing with missing values. Existing studies ignored to compare and discuss the deletion and imputation methods of missing values under the row missing rate and the total missing rate. Meanwhile, they rarely used experiment data sets that are mixed-type and large scale. In this work, medical data sets of various sizes and mixed-type are used. At the same time, performance differences of deletion and imputation methods are compared under the MCAR (Missing Completely At Random) mechanism in the baseline task using LR (Linear Regression) and SVM (Support Vector Machine) classifiers for classification with the same row and total missing rates. Experimental results show that under the MCAR missing mechanism, the performance of two types of processing methods is related to the size of datasets and missing rates. As the increasing of missing rate, the performance of two types for processing missing values decreases, but the deletion method decreases faster, and the imputation methods based on machine learning have more stable and better classification performance on average. In addition, small data sets are easily affected by processing methods of missing values.
2023-06-09
Zhao, Junjie, Xu, Bingfeng, Chen, Xinkai, Wang, Bo, He, Gaofeng.  2022.  Analysis Method of Security Critical Components of Industrial Cyber Physical System based on SysML. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :270—275.
To solve the problem of an excessive number of component vulnerabilities and limited defense resources in industrial cyber physical systems, a method for analyzing security critical components of system is proposed. Firstly, the components and vulnerability information in the system are modeled based on SysML block definition diagram. Secondly, as SysML block definition diagram is challenging to support direct analysis, a block security dependency graph model is proposed. On this basis, the transformation rules from SysML block definition graph to block security dependency graph are established according to the structure of block definition graph and its vulnerability information. Then, the calculation method of component security importance is proposed, and a security critical component analysis tool is designed and implemented. Finally, an example of a Drone system is given to illustrate the effectiveness of the proposed method. The application of this method can provide theoretical and technical support for selecting key defense components in the industrial cyber physical system.
2023-05-12
Yu, Juan.  2022.  Research on Location Information and Privacy Protection Based on Big Data. 2022 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC). :226–229.

In the context of big data era, in order to prevent malicious access and information leakage during data services, researchers put forward a location big data encryption method based on privacy protection in practical exploration. According to the problems arising from the development of information network in recent years, users often encounter the situation of randomly obtaining location information in the network environment, which not only threatens their privacy security, but also affects the effective transmission of information. Therefore, this study proposed the privacy protection as the core position of big data encryption method, must first clear position with large data representation and positioning information, distinguish between processing position information and the unknown information, the fuzzy encryption theory, dynamic location data regrouping, eventually build privacy protection as the core of the encryption algorithm. The empirical results show that this method can not only effectively block the intrusion of attack data, but also effectively control the error of position data encryption.

Wang, Weiqiang.  2022.  Research on China's National Cultural Security Data Collection and Intelligent Analysis Framework in the New Era under the Networked Big Data. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :786–789.
National cultural security has existed since ancient times, but it has become a focal proposition in the context of the times and real needs. From the perspective of national security, national cultural security is an important part of national security, and it has become a strategic task that cannot be ignored in defending national security. Cultural diversity and imbalance are the fundamental prerequisites for the existence of national cultural security. Finally, the artificial intelligence algorithm is used as the theoretical basis for this article, the connotation and characteristics of China's national cultural security theory; Xi Jinping's "network view"; network ideological security view. The fourth part is the analysis of the current cultural security problems, hazards and their root causes in our country.
ISSN: 2768-5330
Rebolledo-Mendez, Jovan D, Tonatiuh Gomez Briones, Felix A., Gonzalez Cardona, Leslie G.  2022.  Legal Artificial Assistance Agent to Assist Refugees. 2022 IEEE International Conference on Big Data (Big Data). :5126–5128.
Populations move across regions in search of better living possibilities, better life outcomes or going away from problems that affected their lives in the previous region they lived in. In the United States of America, this problem has been happening over decades. Intelligent Conversational Text-based Agents, also called Chatbots, and Artificial Intelligence are increasingly present in our lives and over recent years, their presence has increased considerably, due to the usability cases and the familiarity they are wining constantly. Using NLP algorithms for law in accessible platforms allows scaling of users to access a certain level of law expert who could assist users in need. This paper describes the motivation and circumstances of this problem as well as the description of the development of an Intelligent Conversational Agent system that was used by immigrants in the USA so they could get answers to questions and get suggestions about better legal options they could have access to. This system has helped thousands of people, especially in California
2023-04-14
Selvaganesh, M., Naveen Karthi, P., Nitish Kumar, V. A., Prashanna Moorthy, S. R..  2022.  Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :697–701.
A brute force is a Hacking methodology used to decrypt login passwords, keys and credentials. Hacks that exploit vulnerabilities in packages are rare, whereas Brute Force attacks aim to be the simplest, cheapest, and most straightforward approach to access a website. Using Splunk to analyse massive amounts of data could be very beneficial. The application enables to capture, search, and analyse log information in real-time. By analysing logs as well as many different sources of system information, security events can be uncovered. A log file, which details the events that have occurred in the environment of the application and the server on which they run, is a valuable piece of information. Identifying the attacks against these systems is possible by analysing and correlating this information. Massive amounts of ambiguous and amorphous information can be analysed with its superior resolution. The paper includes instructions on setting up a Splunk server and routing information there from multiple sources. Practical search examples and pre-built add-on applications are provided. Splunk is a powerful tool that allows users to explore big data with greater ease. Seizure can be tracked in near real-time and can be searched through logs. A short amount of time can be spent on analysing big data using map-reduce technology. Briefly, it helps to analyse unstructured log data to better understand how the applications operate. With Splunk, client can detect patterns in the data through a powerful query language. It is easy to set up alerts and warnings based on the queries, which will help alert client about an ongoing (suspected) activity and generate a notification in real-time.