Visible to the public Biblio

Filters: Author is Tong, Hanghang  [Clear All Filters]
2023-09-18
Warmsley, Dana, Waagen, Alex, Xu, Jiejun, Liu, Zhining, Tong, Hanghang.  2022.  A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. 2022 IEEE International Conference on Big Data (Big Data). :2932—2939.
Malicious cybersecurity activities have become increasingly worrisome for individuals and companies alike. While machine learning methods like Graph Neural Networks (GNNs) have proven successful on the malware detection task, their output is often difficult to understand. Explainable malware detection methods are needed to automatically identify malicious programs and present results to malware analysts in a way that is human interpretable. In this survey, we outline a number of GNN explainability methods and compare their performance on a real-world malware detection dataset. Specifically, we formulated the detection problem as a graph classification problem on the malware Control Flow Graphs (CFGs). We find that gradient-based methods outperform perturbation-based methods in terms of computational expense and performance on explainer-specific metrics (e.g., Fidelity and Sparsity). Our results provide insights into designing new GNN-based models for cyber malware detection and attribution.
2018-01-10
Chen, Chen, Tong, Hanghang, Xie, Lei, Ying, Lei, He, Qing.  2017.  Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data. 11:42:1–42:26.
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model—multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can reveal unobserved dependencies with linear complexity. Moreover, we derive F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater-ZERO, an online variant of F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.