Visible to the public Biblio

Filters: Keyword is UML  [Clear All Filters]
2021-04-27
Masmali, O., Badreddin, O..  2020.  Comprehensive Model-Driven Complexity Metrics for Software Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :674—675.

Measuring software complexity is key in managing the software lifecycle and in controlling its maintenance. While there are well-established and comprehensive metrics to measure the complexity of the software code, assessment of the complexity of software designs remains elusive. Moreover, there are no clear guidelines to help software designers chose alternatives that reduce design complexity, improve design comprehensibility, and improve the maintainability of the software. This paper outlines a language independent approach to measuring software design complexity using objective and deterministic metrics. The paper outlines the metrics for two major software design notations; UML Class Diagrams and UML State Machines. The approach is based on the analysis of the design elements and their mutual interactions. The approach can be extended to cover other UML design notations.

2021-01-28
Kumar, B. S., Daniya, T., Sathya, N., Cristin, R..  2020.  Investigation on Privacy Preserving using K-Anonymity Techniques. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1—7.

In the current world, day by day the data growth and the investigation about that information increased due to the pervasiveness of computing devices, but people are reluctant to share their information on online portals or surveys fearing safety because sensitive information such as credit card information, medical conditions and other personal information in the wrong hands can mean danger to the society. These days privacy preserving has become a setback for storing data in data repository so for that reason data in the repository should be made undistinguishable, data is encrypted while storing and later decrypted when needed for analysis purpose in data mining. While storing the raw data of the individuals it is important to remove person-identifiable information such as name, employee id. However, the other attributes pertaining to the person should be encrypted so the methodologies used to implement. These methodologies can make data in the repository secure and PPDM task can made easier.

2020-04-24
Zhang, Lichen.  2018.  Modeling Cloud Based Cyber Physical Systems Based on AADL. 2018 24th International Conference on Automation and Computing (ICAC). :1—6.

Cloud-based cyber-physical systems, like vehicle and intelligent transportation systems, are now attracting much more attentions. These systems usually include large-scale distributed sensor networks covering various components and producing enormous measurement data. Lots of modeling languages are put to use for describing cyber-physical systems or its aspects, bringing contribution to the development of cyber-physical systems. But most of the modeling techniques only focuse on software aspect so that they could not exactly express the whole cloud-based cyber-physical systems, which require appropriate views and tools in its design; but those tools are hard to be used under systemic or object-oriented methods. For example, the widest used modeling language, UML, could not fulfil the above design's requirements by using the foremer's standard form. This paper presents a method designing the cloud-based cyber-physical systems with AADL, by which we can analyse, model and apply those requirements on cloud platforms ensuring QoS in a relatively highly extensible way at the mean time.

2019-12-30
Peldszus, Sven, Strüber, Daniel, Jürjens, Jan.  2018.  Model-Based Security Analysis of Feature-Oriented Software Product Lines. Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences. :93-106.
Today's software systems are too complex to ensure security after the fact – security has to be built into systems by design. To this end, model-based techniques such as UMLsec support the design-time specification and analysis of security requirements by providing custom model annotations and checks. Yet, a particularly challenging type of complexity arises from the variability of software product lines. Analyzing the security of all products separately is generally infeasible. In this work, we propose SecPL, a methodology for ensuring security in a software product line. SecPL allows developers to annotate the system design model with product-line variability and security requirements. To keep the exponentially large configuration space tractable during security checks, SecPL provides a family-based security analysis. In our experiments, this analysis outperforms the naive strategy of checking all products individually. Finally, we present the results of a user study that indicates the usability of our overall methodology.
2018-02-27
Ramadan, Q., Salnitriy, M., Strüber, D., Jürjens, J., Giorgini, P..  2017.  From Secure Business Process Modeling to Design-Level Security Verification. 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS). :123–133.

Tracing and integrating security requirements throughout the development process is a key challenge in security engineering. In socio-technical systems, security requirements for the organizational and technical aspects of a system are currently dealt with separately, giving rise to substantial misconceptions and errors. In this paper, we present a model-based security engineering framework for supporting the system design on the organizational and technical level. The key idea is to allow the involved experts to specify security requirements in the languages they are familiar with: business analysts use BPMN for procedural system descriptions; system developers use UML to design and implement the system architecture. Security requirements are captured via the language extensions SecBPMN2 and UMLsec. We provide a model transformation to bridge the conceptual gap between SecBPMN2 and UMLsec. Using UMLsec policies, various security properties of the resulting architecture can be verified. In a case study featuring an air traffic management system, we show how our framework can be practically applied.