Visible to the public Biblio

Filters: Keyword is Power demand  [Clear All Filters]
2020-03-02
Yoshikawa, Masaya, Nozaki, Yusuke.  2019.  Side-Channel Analysis for Searchable Encryption System and Its Security Evaluation. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :465–469.

Searchable encryption will become more important as medical services intensify their use of big data and artificial intelligence. To use searchable encryption safely, the resistance of terminals with embedded searchable encryption to illegal attacks (tamper resistance) is extremely important. This study proposes a searchable encryption system embedded in terminals and evaluate the tamper resistance of the proposed system. This study also proposes attack scenarios and quantitatively evaluates the tamper resistance of the proposed system by performing experiments following the proposed attack scenarios.

Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Countermeasure of Lightweight Physical Unclonable Function Against Side-Channel Attack. 2019 Cybersecurity and Cyberforensics Conference (CCC). :30–34.

In industrial internet of things, various devices are connected to external internet. For the connected devices, the authentication is very important in the viewpoint of security; therefore, physical unclonable functions (PUFs) have attracted attention as authentication techniques. On the other hand, the risk of modeling attacks on PUFs, which clone the function of PUFs mathematically, is pointed out. Therefore, a resistant-PUF such as a lightweight PUF has been proposed. However, new analytical methods (side-channel attacks: SCAs), which use side-channel information such as power or electromagnetic waves, have been proposed. The countermeasure method has also been proposed; however, an evaluation using actual devices has not been studied. Since PUFs use small production variations, the implementation evaluation is very important. Therefore, this study proposes a SCA countermeasure of the lightweight PUF. The proposed method is based on the previous studies, and maintains power consumption consistency during the generation of response. In experiments using a field programmable gate array, the measured power consumption was constant regardless of output values of the PUF could be confirmed. Then, experimental results showed that the predicted rate of the response was about 50 %, and the proposed method had a tamper resistance against SCAs.

2020-02-26
Nejat, Arash, Kazemi, Zahra, Beroulle, Vincent, Hely, David, Fazeli, Mahdi.  2019.  Restricting Switching Activity Using Logic Locking to Improve Power Analysis-Based Trojan Detection. 2019 IEEE 4th International Verification and Security Workshop (IVSW). :49–54.

Nowadays due to economic reasons most of the semiconductor companies prefer to outsource the manufacturing part of their designs to third fabrication foundries, the so-called fabs. Untrustworthy fabs can extract circuit blocks, the called intellectual properties (IPs), from the layouts and then pirate them. Such fabs are suspected of hardware Trojan (HT) threat in which malicious circuits are added to the layouts for sabotage objectives. HTs lead up to increase power consumption in HT-infected circuits. However, due to process variations, the power of HTs including few gates in million-gate circuits is not detectable in power consumption analysis (PCA). Thus, such circuits should be considered as a collection of small sub-circuits, and PCA must be individually performed for each one of them. In this article, we introduce an approach facilitating PCA-based HT detection methods. Concerning this approach, we propose a new logic locking method and algorithm. Logic locking methods and algorithm are usually employed against IP piracy. They modify circuits such that they do not correctly work without applying a correct key to. Our experiments at the gate level and post-synthesis show that the proposed locking method and algorithm increase the proportion of HT activity and consequently HT power to circuit power.

2020-02-17
Kumar, Sanjeev, Kumar, Harsh, Gunnam, Ganesh Reddy.  2019.  Security Integrity of Data Collection from Smart Electric Meter under a Cyber Attack. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :9–13.
Cyber security has been a top concern for electric power companies deploying smart meters and smart grid technology. Despite the well-known advantages of smart grid technology and the smart meters, it is not yet very clear how and to what extent, the Cyber attacks can hamper the operation of the smart meters, and remote data collections regarding the power usage from the customer sites. To understand these questions, we conducted experiments in a controlled lab environment of our cyber security lab to test a commercial grade smart meter. In this paper, we present results of our investigation for a commercial grade smart meter and measure the operation integrity of the smart meter under cyber-attack conditions.
2020-01-20
Ajaei, F. Badrkhani, Mohammadi, J., Stevens, G., Akhavan, E..  2019.  Hybrid AC/DC Microgrid Configurations for a Net-Zero Energy Community. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1–7.

The hybrid microgrid is attracting great attention in recent years as it combines the main advantages of the alternating current (AC) and direct current (DC) microgrids. It is one of the best candidates to support a net-zero energy community. Thus, this paper investigates and compares different hybrid AC/DC microgrid configurations that are suitable for a net-zero energy community. Four different configurations are compared with each other in terms of their impacts on the overall system reliability, expandability, load shedding requirements, power sharing issues, net-zero energy capability, number of the required interface converters, and the requirement of costly medium-voltage components. The results of the investigations indicate that the best results are achieved when each building is enabled to supply its critical loads using an independent AC microgrid that is interfaced to the DC microgrid through a dedicated interface converter.

2019-03-15
Hossain, F. S., Shintani, M., Inoue, M., Orailoglu, A..  2018.  Variation-Aware Hardware Trojan Detection through Power Side-Channel. 2018 IEEE International Test Conference (ITC). :1-10.

A hardware Trojan (HT) denotes the malicious addition or modification of circuit elements. The purpose of this work is to improve the HT detection sensitivity in ICs using power side-channel analysis. This paper presents three detection techniques in power based side-channel analysis by increasing Trojan-to-circuit power consumption and reducing the variation effect in the detection threshold. Incorporating the three proposed methods has demonstrated that a realistic fine-grain circuit partitioning and an improved pattern set to increase HT activation chances can magnify Trojan detectability.

Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

2019-01-16
Lasso, F. F. J., Clarke, K., Nirmalathas, A..  2018.  A software-defined networking framework for IoT based on 6LoWPAN. 2018 Wireless Telecommunications Symposium (WTS). :1–7.

The software defined networking framework facilitates flexible and reliable internet of things networks by moving the network intelligence to a centralized location while enabling low power wireless network in the edge. In this paper, we present SD-WSN6Lo, a novel software-defined wireless management solution for 6LoWPAN networks that aims to reduce the management complexity in WSN's. As an example of the technique, a simulation of controlling the power consumption of sensor nodes is presented. The results demonstrate improved energy consumption of approximately 15% on average per node compared to the baseline condition.

Shirbhate, M. D., Solapure, S. S..  2018.  Improving existing 6LoWPAN RPL for content based routing. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :632–635.

Internet of things has become a subject of interest across a different industry domain. It includes 6LoWPAN (Low-Power Wireless Personal Area Network) which is used for a variety of application including home automation, sensor networks, manufacturing and industry application etc. However, gathering such a huge amount of data from such a different domain causes a problem of traffic congestion, high reliability, high energy efficiency etc. In order to address such problems, content based routing (CBR) technique is proposed, where routing paths are decided according to the type of content. By routing the correlated data to hop nodes for processing, a higher data aggregation ratio can be obtained, which in turns reducing the traffic congestion and minimizes the energy consumption. CBR is implemented on top of existing RPL (Routing Protocol for Low Power and Lossy network) and implemented in contiki operating system using cooja simulator. The analysis are carried out on the basis average power consumption, packet delivery ratio etc.

2018-03-05
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
2018-02-21
Bellizia, D., Scotti, G., Trifiletti, A..  2017.  Fully integrable current-mode feedback suppressor as an analog countermeasure against CPA attacks in 40nm CMOS technology. 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). :349–352.

Security of sensible data for ultraconstrained IoT smart devices is one of the most challenging task in modern design. The needs of CPA-resistant cryptographic devices has to deal with the demanding requirements of small area and small impact on the overall power consumption. In this work, a novel current-mode feedback suppressor as on-chip analog-level CPA countermeasure is proposed. It aims to suppress differences in power consumption due to data-dependency of CMOS cryptographic devices, in order to counteract CPA attacks. The novel countermeasure is able to improve MTD of unprotected CMOS implementation of at least three orders of magnitude, providing a ×1.1 area and ×1.7 power overhead.

2017-12-04
Rodrigues, P., Sreedharan, S., Basha, S. A., Mahesh, P. S..  2017.  Security threat identification using energy points. 2017 2nd International Conference on Anti-Cyber Crimes (ICACC). :52–54.

This research paper identifies security issues; especially energy based security attacks and enhances security of the system. It is very essential to consider Security of the system to be developed in the initial Phases of the software Cycle of Software Development (SDLC) as many billions of bucks are drained owing to security flaws in software caused due to improper or no security process. Security breaches that occur on software system are in umpteen numbers. Scientific Literature propose many solutions to overcome security issues, all security mechanisms are reactive in nature. In this paper new security solution is proposed that is proactive in nature especially for energy based denial of service attacks which is frequent in the recent past. Proposed solution is based on energy consumption by system known as energy points.

2017-03-08
Reis, R..  2015.  Trends on EDA for low power. 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). :1–4.

One of the main issues in the design of modern integrated circuits is power reduction. Mainly in digital circuits, the power consumption was defined by the dynamic power consumption, during decades. But in the new NanoCMOs technologies, the static power due to the leakage current is becoming the main issue in power consumption. As the leakage power is related to the amount of components, it is becoming mandatory to reduce the amount of transistors in any type of design, to reduce power consumption. So, it is important to obtain new EDA algorithms and tools to optimize the amount of components (transistors). It is also needed tools for the layout design automation that are able to design any network of components that is provided by an optimization tool that is able to reduce the size of the network of components. It is presented an example of a layout design automation tool that can do the layout of any network of transistors using transistors of any size. Another issue for power optimization is the use of tools and algorithms for gate sizing. The designer can manage the sizing of transistors to reduce power consumption, without compromising the clock frequency. There are two types of gate sizing, discrete gate sizing and continuous gate sizing. The discrete gate sizing tools are used when it is being used a cell library that has only few available sizes for each cell. The continuous gate sizing considers that the EDA tool can define any transistor sizing. In this case, the designer needs to have a layout design tool able to do the layout of transistors with any size. It will be presented the winner tools of the ISPD Contest 2012 and 2013. Also, it will be discussed the inclusion of our gate sizing algorithms in an industrial flow used to design state-of-the-art microprocessors. Another type of EDA tool that is becoming more and more useful is the visualization tools that provide an animated visual output of the running of EDA tools. This kind of tools is very usef- l to show to the tool developers how the tool is running. So, the EDA developers can use this information to improve the algorithms used in an EDA Tool.

2017-02-23
K. Mpalane, H. D. Tsague, N. Gasela, B. M. Esiefarienrhe.  2015.  "Bit-Level Differential Power Analysis Attack on Implementations of Advanced Encryption Standard Software Running Inside a PIC18F2420 Microcontroller". 2015 International Conference on Computational Science and Computational Intelligence (CSCI). :42-46.

Small embedded devices such as microcontrollers have been widely used for identification, authentication, securing and storing confidential information. In all these applications, the security and privacy of the microcontrollers are of crucial importance. To provide strong security to protect data, these devices depend on cryptographic algorithms to ensure confidentiality and integrity of data. Moreover, many algorithms have been proposed, with each one having its strength and weaknesses. This paper presents a Differential Power Analysis(DPA) attack on hardware implementations of Advanced Encryption Standard(AES) running inside a PIC18F2420 microcontroller.

2017-02-21
W. Guibene, K. E. Nolan, M. Y. Kelly.  2015.  "Survey on Clean Slate Cellular-IoT Standard Proposals". 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. :1596-1599.

In this paper we investigate the proposals made by various industries for the Cellular Internet of Things (C-IoT). We start by introducing the context of C-IoT and demonstrate how this technology is closely linked to the Low Power-Wide Area (LPWA) technologies and networks. An in-depth look and system level evaluation is given for each clean slate technology and a comparison is made based on its specifications.

W. Guibene, K. E. Nolan, M. Y. Kelly.  2015.  "Survey on Clean Slate Cellular-IoT Standard Proposals". 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. :1596-1599.

In this paper we investigate the proposals made by various industries for the Cellular Internet of Things (C-IoT). We start by introducing the context of C-IoT and demonstrate how this technology is closely linked to the Low Power-Wide Area (LPWA) technologies and networks. An in-depth look and system level evaluation is given for each clean slate technology and a comparison is made based on its specifications.

2015-05-06
Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, Chao, H.J..  2014.  High-Throughput and Memory-Efficient Multimatch Packet Classification Based on Distributed and Pipelined Hash Tables. Networking, IEEE/ACM Transactions on. 22:982-995.

The emergence of new network applications, such as the network intrusion detection system and packet-level accounting, requires packet classification to report all matched rules instead of only the best matched rule. Although several schemes have been proposed recently to address the multimatch packet classification problem, most of them require either huge memory or expensive ternary content addressable memory (TCAM) to store the intermediate data structure, or they suffer from steep performance degradation under certain types of classifiers. In this paper, we decompose the operation of multimatch packet classification from the complicated multidimensional search to several single-dimensional searches, and present an asynchronous pipeline architecture based on a signature tree structure to combine the intermediate results returned from single-dimensional searches. By spreading edges of the signature tree across multiple hash tables at different stages, the pipeline can achieve a high throughput via the interstage parallel access to hash tables. To exploit further intrastage parallelism, two edge-grouping algorithms are designed to evenly divide the edges associated with each stage into multiple work-conserving hash tables. To avoid collisions involved in hash table lookup, a hybrid perfect hash table construction scheme is proposed. Extensive simulation using realistic classifiers and traffic traces shows that the proposed pipeline architecture outperforms HyperCuts and B2PC schemes in classification speed by at least one order of magnitude, while having a similar storage requirement. Particularly, with different types of classifiers of 4K rules, the proposed pipeline architecture is able to achieve a throughput between 26.8 and 93.1 Gb/s using perfect hash tables.

Yier Jin, Sullivan, D..  2014.  Real-time trust evaluation in integrated circuits. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. :1-6.

The use of side-channel measurements and fingerprinting, in conjunction with statistical analysis, has proven to be the most effective method for accurately detecting hardware Trojans in fabricated integrated circuits. However, these post-fabrication trust evaluation methods overlook the capabilities of advanced design skills that attackers can use in designing sophisticated Trojans. To this end, we have designed a Trojan using power-gating techniques and demonstrate that it can be masked from advanced side-channel fingerprinting detection while dormant. We then propose a real-time trust evaluation framework that continuously monitors the on-board global power consumption to monitor chip trustworthiness. The measurements obtained corroborate our frameworks effectiveness for detecting Trojans. Finally, the results presented are experimentally verified by performing measurements on fabricated Trojan-free and Trojan-infected variants of a reconfigurable linear feedback shift register (LFSR) array.

Kitsos, Paris, Voyiatzis, Artemios G..  2014.  Towards a hardware Trojan detection methodology. Embedded Computing (MECO), 2014 3rd Mediterranean Conference on. :18-23.

Malicious hardware is a realistic threat. It can be possible to insert the malicious functionality on a device as deep as in the hardware design flow, long before manufacturing the silicon product. Towards developing a hardware Trojan horse detection methodology, we analyze capabilities and limitations of existing techniques, framing a testing strategy for uncovering efficiently hardware Trojan horses in mass-produced integrated circuits.
 

2015-05-05
Tombaz, S., Sang-wook Han, Ki Won Sung, Zander, J..  2014.  Energy Efficient Network Deployment With Cell DTX. Communications Letters, IEEE. 18:977-980.

Cell discontinuous transmission (DTX) is a new feature that enables sleep mode operations at base station (BS) side during the transmission time intervals when there is no traffic. In this letter, we analyze the maximum achievable energy saving of the cell DTX. We incorporate the cell DTX with a clean-slate network deployment and obtain optimal BS density for lowest energy consumption satisfying a certain quality of service requirement considering daily traffic variation. The numerical result indicates that the fast traffic adaptation capability of cell DTX favors dense network deployment with lightly loaded cells, which brings about considerable improvement in energy saving.
 

2015-04-30
Shila, D.M., Venugopal, V..  2014.  Design, implementation and security analysis of Hardware Trojan Threats in FPGA. Communications (ICC), 2014 IEEE International Conference on. :719-724.

Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.