Biblio
Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.
In many Twitter applications, developers collect only a limited sample of tweets and a local portion of the Twitter network. Given such Twitter applications with limited data, how can we classify Twitter users as either bots or humans? We develop a collection of network-, linguistic-, and application-oriented variables that could be used as possible features, and identify specific features that distinguish well between humans and bots. In particular, by analyzing a large dataset relating to the 2014 Indian election, we show that a number of sentimentrelated factors are key to the identification of bots, significantly increasing the Area under the ROC Curve (AUROC). The same method may be used for other applications as well.