Biblio
These days deep learning is the fastest-growing area in the field of Machine Learning. Convolutional Neural Networks are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this paper, we have focused on the most frequently mentioned problem in the field of machine learning, that is relatively poor generalization abilities. Partial remedies for this are regularization techniques e.g. dropout, batch normalization, weight decay, transfer learning, early stopping and data augmentation. In this paper we have focused on data augmentation. We propose to use a method based on a neural style transfer, which allows to generate new unlabeled images of high perceptual quality that combine the content of a base image with the appearance of another one. In a proposed approach, the newly created images are described with pseudo-labels, and then used as a training dataset. Real, labeled images are divided into the validation and test set. We validated proposed method on a challenging skin lesion classification case study. Four representative neural architectures are examined. Obtained results show the strong potential of the proposed approach.
Deep learning has undergone tremendous advancements in computer vision studies. The training of deep learning neural networks depends on a considerable amount of ground truth datasets. However, labeling ground truth data is a labor-intensive task, particularly for large-volume video analytics applications such as video surveillance and vehicles detection for autonomous driving. This paper presents a rapid and accurate method for associative searching in big image data obtained from security monitoring systems. We developed a semi-automatic moving object annotation method for improving deep learning models. The proposed method comprises three stages, namely automatic foreground object extraction, object annotation in subsequent video frames, and dataset construction using human-in-the-loop quick selection. Furthermore, the proposed method expedites dataset collection and ground truth annotation processes. In contrast to data augmentation and data generative models, the proposed method produces a large amount of real data, which may facilitate training results and avoid adverse effects engendered by artifactual data. We applied the constructed annotation dataset to train a deep learning you-only-look-once (YOLO) model to perform vehicle detection on street intersection surveillance videos. Experimental results demonstrated that the accurate detection performance was improved from a mean average precision (mAP) of 83.99 to 88.03.
Biometrics has become ubiquitous and spurred common use in many authentication mechanisms. Keystroke dynamics is a form of behavioral biometrics that can be used for user authentication while actively working at a terminal. The proposed mechanisms involve digraph, trigraph and n-graph analysis as separate solutions or suggest a fusion mechanism with certain limitations. However, deep learning can be used as a unifying machine learning technique that consolidates the power of all different features since it has shown tremendous results in image recognition and natural language processing. In this paper, we investigate the applicability of deep learning on three different datasets by using convolutional neural networks and Gaussian data augmentation technique. We achieve 10% higher accuracy and 7.3% lower equal error rate (EER) than existing methods. Also, our sensitivity analysis indicates that the convolution operation and the fully-connected layer are the most prominent factors that affect the accuracy and the convergence rate of a network trained with keystroke data.