Biblio
Recently, the novel networking technology Software-Defined Networking(SDN) and Service Function Chaining(SFC) are rapidly growing, and security issues are also emerging for SDN and SFC. However, the research about security and safety on a novel networking environment is still unsatisfactory, and the vulnerabilities have been revealed continuously. Among these security issues, this paper addresses the ARP Poisoning attack to exploit SFC vulnerability, and proposes a method to defend the attack. The proposed method recognizes the repetitive ARP reply which is a feature of ARP Poisoning attack, and detects ARP Poisoning attack. The proposed method overcomes the limitations of the existing detection methods. The proposed method also detects the presence of an attack more accurately.
Elliptic curve cryptography (ECC) is a relatively newer form of public key cryptography that provides more security per bit than other forms of cryptography still being used today. We explore the mathematical structure and operations of elliptic curves and how those properties make curves suitable tools for cryptography. A brief historical context is given followed by the safety of usage in production, as not all curves are free from vulnerabilities. Next, we compare ECC with other popular forms of cryptography for both key exchange and digital signatures, in terms of security and speed. Traditional applications of ECC, both theoretical and in-practice, are presented, including key exchange for web browser usage and DNSSEC. We examine multiple uses of ECC in a mobile context, including cellular phones and the Internet of Things. Modern applications of curves are explored, such as iris recognition, RFID, smart grid, as well as an application for E-health. Finally, we discuss how ECC stacks up in a post-quantum cryptography world.
Recently, cellular operators have started migrating to IPv6 in response to the increasing demand for IP addresses. With the introduction of IPv6, cellular middleboxes, such as firewalls for preventing malicious traffic from the Internet and stateful NAT64 boxes for providing backward compatibility with legacy IPv4 services, have become crucial to maintain stability of cellular networks. This paper presents security problems of the currently deployed IPv6 middleboxes of five major operators. To this end, we first investigate several key features of the current IPv6 deployment that can harm the safety of a cellular network as well as its customers. These features combined with the currently deployed IPv6 middlebox allow an adversary to launch six different attacks. First, firewalls in IPv6 cellular networks fail to block incoming packets properly. Thus, an adversary could fingerprint cellular devices with scanning, and further, she could launch denial-of-service or over-billing attacks. Second, vulnerabilities in the stateful NAT64 box, a middlebox that maps an IPv6 address to an IPv4 address (and vice versa), allow an adversary to launch three different attacks: 1) NAT overflow attack that allows an adversary to overflow the NAT resources, 2) NAT wiping attack that removes active NAT mappings by exploiting the lack of TCP sequence number verification of firewalls, and 3) NAT bricking attack that targets services adopting IP-based blacklisting by preventing the shared external IPv4 address from accessing the service. We confirmed the feasibility of these attacks with an empirical analysis. We also propose effective countermeasures for each attack.