Visible to the public Biblio

Filters: Keyword is NSL-KDD  [Clear All Filters]
2023-06-22
Chavan, Neeta, Kukreja, Mohit, Jagwani, Gaurav, Nishad, Neha, Deb, Namrata.  2022.  DDoS Attack Detection and Botnet Prevention using Machine Learning. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1159–1163.
One of the major threats in the cyber security and networking world is a Distributed Denial of Service (DDoS) attack. With massive development in Science and Technology, the privacy and security of various organizations are concerned. Computer Intrusion and DDoS attacks have always been a significant issue in networked environments. DDoS attacks result in non-availability of services to the end-users. It interrupts regular traffic flow and causes a flood of flooded packets, causing the system to crash. This research presents a Machine Learning-based DDoS attack detection system to overcome this challenge. For the training and testing purpose, we have used the NSL-KDD Dataset. Logistic Regression Classifier, Support Vector Machine, K Nearest Neighbour, and Decision Tree Classifier are examples of machine learning algorithms which we have used to train our model. The accuracy gained are 90.4, 90.36, 89.15 and 82.28 respectively. We have added a feature called BOTNET Prevention, which scans for Phishing URLs and prevents a healthy device from being a part of the botnet.
ISSN: 2575-7288
2023-01-13
Bong, Kijung, Kim, Jonghyun.  2022.  Analysis of Intrusion Detection Performance by Smoothing Factor of Gaussian NB Model Using Modified NSL-KDD Dataset. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1471—1476.
Recently, research on AI-based network intrusion detection has been actively conducted. In previous studies, the machine learning models such as SVM (Support Vector Machine) and RF (Random Forest) showed consistently high performance, whereas the NB (Naïve Bayes) showed various performances with large deviations. In the paper, after analyzing the cause of the NB models showing various performances addressed in the several studies, we measured the performance of the Gaussian NB model according to the smoothing factor that is closely related to these causes. Furthermore, we compared the performance of the Gaussian NB model with that of the other models as a zero-day attack detection system. As a result of the experiment, the accuracy was 38.80% and 87.99% in case that the smoothing factor is 0 and default respectively, and the highest accuracy was 94.53% in case that the smoothing factor is 1e-01. In the experiment, we used only some types of the attack data in the NSL-KDD dataset. The experiments showed the applicability of the Gaussian NB model as a zero-day attack detection system in the future. In addition, it is clarified that the smoothing factor of the Gaussian NB model determines the shape of gaussian distribution that is related to the likelihood.
2022-03-23
Slevi, S. Tamil, Visalakshi, P..  2021.  A survey on Deep Learning based Intrusion Detection Systems on Internet of Things. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1488–1496.
The integration of IDS and Internet of Things (IoT) with deep learning plays a significant role in safety. Security has a strong role to play. Application of the IoT network decreases the time complexity and resources. In the traditional intrusion detection systems (IDS), this research work implements the cutting-edge methodologies in the IoT environment. This research is based on analysis, conception, testing and execution. Detection of intrusions can be performed by using the advanced deep learning system and multiagent. The NSL-KDD dataset is used to test the IoT system. The IoT system is used to test the IoT system. In order to detect attacks from intruders of transport layer, efficiency result rely on advanced deep learning idea. In order to increase the system performance, multi -agent algorithms could be employed to train communications agencies and to optimize the feedback training process. Advanced deep learning techniques such as CNN will be researched to boost system performance. The testing part an IoT includes data simulator which will be used to generate in continuous of research work finding with deep learning algorithms of suitable IDS in IoT network environment of current scenario without time complexity.
2022-03-01
Sapre, Suchet, Islam, Khondkar, Ahmadi, Pouyan.  2021.  A Comprehensive Data Sampling Analysis Applied to the Classification of Rare IoT Network Intrusion Types. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
With the rapid growth of Internet of Things (IoT) network intrusion attacks, there is a critical need for sophisticated and comprehensive intrusion detection systems (IDSs). Classifying infrequent intrusion types such as root-to-local (R2L) and user-to-root (U2R) attacks is a reoccurring problem for IDSs. In this study, various data sampling and class balancing techniques-Generative Adversarial Network (GAN)-based oversampling, k-nearest-neighbor (kNN) oversampling, NearMiss-1 undersampling, and class weights-were used to resolve the severe class imbalance affecting U2R and R2L attacks in the NSL-KDD intrusion detection dataset. Artificial Neural Networks (ANNs) were trained on the adjusted datasets, and their performances were evaluated with a multitude of classification metrics. Here, we show that using no data sampling technique (baseline), GAN-based oversampling, and NearMiss-l undersampling, all with class weights, displayed high performances in identifying R2L and U2R attacks. Of these, the baseline with class weights had the highest overall performance with an F1-score of 0.11 and 0.22 for the identification of U2R and R2L attacks, respectively.
2022-01-10
Sallam, Youssef F., Ahmed, Hossam El-din H., Saleeb, Adel, El-Bahnasawy, Nirmeen A., El-Samie, Fathi E. Abd.  2021.  Implementation of Network Attack Detection Using Convolutional Neural Network. 2021 International Conference on Electronic Engineering (ICEEM). :1–6.
The Internet obviously has a major impact on the global economy and human life every day. This boundless use pushes the attack programmers to attack the data frameworks on the Internet. Web attacks influence the reliability of the Internet and its administrations. These attacks are classified as User-to-Root (U2R), Remote-to-Local (R2L), Denial-of-Service (DoS) and Probing (Probe). Subsequently, making sure about web framework security and protecting data are pivotal. The conventional layers of safeguards like antivirus scanners, firewalls and proxies, which are applied to treat the security weaknesses are insufficient. So, Intrusion Detection Systems (IDSs) are utilized to screen PC and data frameworks for security shortcomings. IDS adds more effectiveness in securing networks against attacks. This paper presents an IDS model based on Deep Learning (DL) with Convolutional Neural Network (CNN) hypothesis. The model has been evaluated on the NSLKDD dataset. It has been trained by Kddtrain+ and tested twice, once using kddtrain+ and the other using kddtest+. The achieved test accuracies are 99.7% and 98.43% with 0.002 and 0.02 wrong alert rates for the two test scenarios, respectively.
2021-04-09
Mishra, A., Yadav, P..  2020.  Anomaly-based IDS to Detect Attack Using Various Artificial Intelligence Machine Learning Algorithms: A Review. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—7.
Cyber-attacks are becoming more complex & increasing tasks in accurate intrusion detection (ID). Failure to avoid intrusion can reduce the reliability of security services, for example, integrity, Privacy & availability of data. The rapid proliferation of computer networks (CNs) has reformed the perception of network security. Easily accessible circumstances affect computer networks from many threats by hackers. Threats to a network are many & hypothetically devastating. Researchers have recognized an Intrusion Detection System (IDS) up to identifying attacks into a wide variety of environments. Several approaches to intrusion detection, usually identified as Signature-based Intrusion Detection Systems (SIDS) & Anomaly-based Intrusion Detection Systems (AIDS), were proposed in the literature to address computer safety hazards. This survey paper grants a review of current IDS, complete analysis of prominent new works & generally utilized dataset to evaluation determinations. It also introduces avoidance techniques utilized by attackers to avoid detection. This paper delivers a description of AIDS for attack detection. IDS is an applied research area in artificial intelligence (AI) that uses multiple machine learning algorithms.
2021-03-01
Raj, C., Khular, L., Raj, G..  2020.  Clustering Based Incident Handling For Anomaly Detection in Cloud Infrastructures. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :611–616.
Incident Handling for Cloud Infrastructures focuses on how the clustering based and non-clustering based algorithms can be implemented. Our research focuses in identifying anomalies and suspicious activities that might happen inside a Cloud Infrastructure over available datasets. A brief study has been conducted, where a network statistics dataset the NSL-KDD, has been chosen as the model to be worked upon, such that it can mirror the Cloud Infrastructure and its components. An important aspect of cloud security is to implement anomaly detection mechanisms, in order to monitor the incidents that inhibit the development and the efficiency of the cloud. Several methods have been discovered which help in achieving our present goal, some of these are highlighted as the following; by applying algorithm such as the Local Outlier Factor to cancel the noise created by irrelevant data points, by applying the DBSCAN algorithm which can detect less denser areas in order to identify their cause of clustering, the K-Means algorithm to generate positive and negative clusters to identify the anomalous clusters and by applying the Isolation Forest algorithm in order to implement decision based approach to detect anomalies. The best algorithm would help in finding and fixing the anomalies efficiently and would help us in developing an Incident Handling model for the Cloud.
2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
2020-01-20
Yihunie, Fekadu, Abdelfattah, Eman, Regmi, Amish.  2019.  Applying Machine Learning to Anomaly-Based Intrusion Detection Systems. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–5.

The enormous growth of Internet-based traffic exposes corporate networks with a wide variety of vulnerabilities. Intrusive traffics are affecting the normal functionality of network's operation by consuming corporate resources and time. Efficient ways of identifying, protecting, and mitigating from intrusive incidents enhance productivity. As Intrusion Detection System (IDS) is hosted in the network and at the user machine level to oversee the malicious traffic in the network and at the individual computer, it is one of the critical components of a network and host security. Unsupervised anomaly traffic detection techniques are improving over time. This research aims to find an efficient classifier that detects anomaly traffic from NSL-KDD dataset with high accuracy level and minimal error rate by experimenting with five machine learning techniques. Five binary classifiers: Stochastic Gradient Decent, Random Forests, Logistic Regression, Support Vector Machine, and Sequential Model are tested and validated to produce the result. The outcome demonstrates that Random Forest Classifier outperforms the other four classifiers with and without applying the normalization process to the dataset.

2018-02-27
Potluri, S., Henry, N. F., Diedrich, C..  2017.  Evaluation of Hybrid Deep Learning Techniques for Ensuring Security in Networked Control Systems. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

With the rapid application of the network based communication in industries, the security related problems appear to be inevitable for automation networks. The integration of internet into the automation plant benefited companies and engineers a lot and on the other side paved ways to number of threats. An attack on such control critical infrastructure may endangers people's health and safety, damage industrial facilities and produce financial loss. One of the approach to secure the network in automation is the development of an efficient Network based Intrusion Detection System (NIDS). Despite several techniques available for intrusion detection, they still lag in identifying the possible attacks or novel attacks on network efficiently. In this paper, we evaluate the performance of detection mechanism by combining the deep learning techniques with the machine learning techniques for the development of Intrusion Detection System (IDS). The performance metrics such as precession, recall and F-Measure were measured.