Zadeh Nojoo Kambar, Mina Esmail, Esmaeilzadeh, Armin, Kim, Yoohwan, Taghva, Kazem.
2022.
A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Zhou, Ziyi, Han, Xing, Chen, Zeyuan, Nan, Yuhong, Li, Juanru, Gu, Dawu.
2022.
SIMulation: Demystifying (Insecure) Cellular Network based One-Tap Authentication Services. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :534–546.
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
ISSN: 2158-3927
Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.
2022.
Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
Saxena, Anish, Panda, Biswabandan.
2022.
DABANGG: A Case for Noise Resilient Flush-Based Cache Attacks. 2022 IEEE Security and Privacy Workshops (SPW). :323–334.
Flush-based cache attacks like Flush+Reload and Flush+Flush are highly precise and effective. Most of the flush-based attacks provide high accuracy in controlled and isolated environments where attacker and victim share OS pages. However, we observe that these attacks are prone to low accuracy on a noisy multi-core system with co-running applications. Two root causes for the varying accuracy of flush-based attacks are: (i) the dynamic nature of core frequencies that fluctuate depending on the system load, and (ii) the relative placement of victim and attacker threads in the processor, like same or different physical cores. These dynamic factors critically affect the execution latency of key instructions like clflush and mov, rendering the pre-attack calibration step ineffective.We propose DABANGG, a set of novel refinements to make flush-based attacks resilient to system noise by making them aware of frequency and thread placement. First, we introduce pre-attack calibration that is aware of instruction latency variation. Second, we use low-cost attack-time optimizations like fine-grained busy waiting and periodic feedback about the latency thresholds to improve the effectiveness of the attack. Finally, we provide victim-specific parameters that significantly improve the attack accuracy. We evaluate DABANGG-enabled Flush+Reload and Flush+Flush attacks against the standard attacks in side-channel and covert-channel experiments with varying levels of compute, memory, and IO-intensive system noise. In all scenarios, DABANGG+Flush+Reload and DABANGG+Flush+Flush outperform the standard attacks in stealth and accuracy.
ISSN: 2770-8411
Aljawarneh, Fatin.
2022.
A Secure Smart Meter Application Framework. 2022 International Conference on Engineering & MIS (ICEMIS). :1–4.
We have proposed a new Smart Meter Application (SMA) Framework. This application registers consumers at utility provider (Electricity), takes the meter reading for electricity and makes billing. The proposed application might offer higher level of flexibility and security, time saving and trustworthiness between consumers and authority offices. It’s expected that the application will be developed by Flutter to support Android and iOS Mobile Operating Systems.
Nolte, Hendrik, Sabater, Simon Hernan Sarmiento, Ehlers, Tim, Kunkel, Julian.
2022.
A Secure Workflow for Shared HPC Systems. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :965–974.
Driven by the progress of data and compute-intensive methods in various scientific domains, there is an in-creasing demand from researchers working with highly sensitive data to have access to the necessary computational resources to be able to adapt those methods in their respective fields. To satisfy the computing needs of those researchers cost-effectively, it is an open quest to integrate reliable security measures on existing High Performance Computing (HPC) clusters. The fundamental problem with securely working with sensitive data is, that HPC systems are shared systems that are typically trimmed for the highest performance - not for high security. For instance, there are commonly no additional virtualization techniques employed, thus, users typically have access to the host operating system. Since new vulnerabilities are being continuously discovered, solely relying on the traditional Unix permissions is not secure enough. In this paper, we discuss a generic and secure workflow that can be implemented on typical HPC systems allowing users to transfer, store and analyze sensitive data. In our experiments, we see an advantage in the asynchronous execution of IO requests, while reaching 80 % of the ideal performance.
Rahkema, Kristiina, Pfahl, Dietmar.
2022.
Quality Analysis of iOS Applications with Focus on Maintainability and Security. 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME). :602–606.
We use mobile apps on a daily basis and there is an app for everything. We trust these applications with our most personal data. It is therefore important that these apps are as secure and well usable as possible. So far most studies on the maintenance and security of mobile applications have been done on Android applications. We do, however, not know how well these results translate to iOS.This research project aims to close this gap by analysing iOS applications with regards to maintainability and security. Regarding maintainability, we analyse code smells in iOS applications, the evolution of code smells in iOS applications and compare code smell distributions in iOS and Android applications. Regarding security, we analyse the evolution of the third-party library dependency network for the iOS ecosystem. Additionally, we analyse how publicly reported vulnerabilities spread in the library dependency network.Regarding maintainability, we found that the distributions of code smells in iOS and Android applications differ. Code smells in iOS applications tend to correspond to smaller classes, such as Lazy Class. Regarding security, we found that the library dependency network of the iOS ecosystem is not growing as fast as in some other ecosystems. There are less dependencies on average than for example in the npm ecosystem and, therefore, vulnerabilities do not spread as far.
ISSN: 2576-3148