Visible to the public Biblio

Filters: Keyword is iOS Security  [Clear All Filters]
2023-03-03
Zadeh Nojoo Kambar, Mina Esmail, Esmaeilzadeh, Armin, Kim, Yoohwan, Taghva, Kazem.  2022.  A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Zhou, Ziyi, Han, Xing, Chen, Zeyuan, Nan, Yuhong, Li, Juanru, Gu, Dawu.  2022.  SIMulation: Demystifying (Insecure) Cellular Network based One-Tap Authentication Services. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :534–546.
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
ISSN: 2158-3927
Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.  2022.  Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
Saxena, Anish, Panda, Biswabandan.  2022.  DABANGG: A Case for Noise Resilient Flush-Based Cache Attacks. 2022 IEEE Security and Privacy Workshops (SPW). :323–334.
Flush-based cache attacks like Flush+Reload and Flush+Flush are highly precise and effective. Most of the flush-based attacks provide high accuracy in controlled and isolated environments where attacker and victim share OS pages. However, we observe that these attacks are prone to low accuracy on a noisy multi-core system with co-running applications. Two root causes for the varying accuracy of flush-based attacks are: (i) the dynamic nature of core frequencies that fluctuate depending on the system load, and (ii) the relative placement of victim and attacker threads in the processor, like same or different physical cores. These dynamic factors critically affect the execution latency of key instructions like clflush and mov, rendering the pre-attack calibration step ineffective.We propose DABANGG, a set of novel refinements to make flush-based attacks resilient to system noise by making them aware of frequency and thread placement. First, we introduce pre-attack calibration that is aware of instruction latency variation. Second, we use low-cost attack-time optimizations like fine-grained busy waiting and periodic feedback about the latency thresholds to improve the effectiveness of the attack. Finally, we provide victim-specific parameters that significantly improve the attack accuracy. We evaluate DABANGG-enabled Flush+Reload and Flush+Flush attacks against the standard attacks in side-channel and covert-channel experiments with varying levels of compute, memory, and IO-intensive system noise. In all scenarios, DABANGG+Flush+Reload and DABANGG+Flush+Flush outperform the standard attacks in stealth and accuracy.
ISSN: 2770-8411
Aljawarneh, Fatin.  2022.  A Secure Smart Meter Application Framework. 2022 International Conference on Engineering & MIS (ICEMIS). :1–4.
We have proposed a new Smart Meter Application (SMA) Framework. This application registers consumers at utility provider (Electricity), takes the meter reading for electricity and makes billing. The proposed application might offer higher level of flexibility and security, time saving and trustworthiness between consumers and authority offices. It’s expected that the application will be developed by Flutter to support Android and iOS Mobile Operating Systems.
Nolte, Hendrik, Sabater, Simon Hernan Sarmiento, Ehlers, Tim, Kunkel, Julian.  2022.  A Secure Workflow for Shared HPC Systems. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :965–974.
Driven by the progress of data and compute-intensive methods in various scientific domains, there is an in-creasing demand from researchers working with highly sensitive data to have access to the necessary computational resources to be able to adapt those methods in their respective fields. To satisfy the computing needs of those researchers cost-effectively, it is an open quest to integrate reliable security measures on existing High Performance Computing (HPC) clusters. The fundamental problem with securely working with sensitive data is, that HPC systems are shared systems that are typically trimmed for the highest performance - not for high security. For instance, there are commonly no additional virtualization techniques employed, thus, users typically have access to the host operating system. Since new vulnerabilities are being continuously discovered, solely relying on the traditional Unix permissions is not secure enough. In this paper, we discuss a generic and secure workflow that can be implemented on typical HPC systems allowing users to transfer, store and analyze sensitive data. In our experiments, we see an advantage in the asynchronous execution of IO requests, while reaching 80 % of the ideal performance.
Rahkema, Kristiina, Pfahl, Dietmar.  2022.  Quality Analysis of iOS Applications with Focus on Maintainability and Security. 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME). :602–606.
We use mobile apps on a daily basis and there is an app for everything. We trust these applications with our most personal data. It is therefore important that these apps are as secure and well usable as possible. So far most studies on the maintenance and security of mobile applications have been done on Android applications. We do, however, not know how well these results translate to iOS.This research project aims to close this gap by analysing iOS applications with regards to maintainability and security. Regarding maintainability, we analyse code smells in iOS applications, the evolution of code smells in iOS applications and compare code smell distributions in iOS and Android applications. Regarding security, we analyse the evolution of the third-party library dependency network for the iOS ecosystem. Additionally, we analyse how publicly reported vulnerabilities spread in the library dependency network.Regarding maintainability, we found that the distributions of code smells in iOS and Android applications differ. Code smells in iOS applications tend to correspond to smaller classes, such as Lazy Class. Regarding security, we found that the library dependency network of the iOS ecosystem is not growing as fast as in some other ecosystems. There are less dependencies on average than for example in the npm ecosystem and, therefore, vulnerabilities do not spread as far.
ISSN: 2576-3148
2022-09-30
Dernayka, Iman, Chehab, Ali.  2021.  Blockchain Development Platforms: Performance Comparison. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.
In this paper, two of the main Blockchain development platforms, Ethereum and EOS.IO are compared. The objective is to help developers select the most appropriate platform as the back-end Blockchain for their apps. A decentralized application was implemented on each of the platforms triggering basic operations and timing them. The simulations were performed on Microsoft’s Azure cloud, running up to 150 Blockchain nodes while recording the user response time, the CPU utilization, and the totally used memory in Mbytes. The results in this study show that although recognized as a major competitor to Ethereum, EOS.IO fails to outperform the Ethereum platform in this experiment, recording a very high response time in comparison to Ethereum.
Williams, Joseph, MacDermott, Áine, Stamp, Kellyann, Iqbal, Farkhund.  2021.  Forensic Analysis of Fitbit Versa: Android vs iOS. 2021 IEEE Security and Privacy Workshops (SPW). :318–326.
Fitbit Versa is the most popular of its predecessors and successors in the Fitbit faction. Increasingly data stored on these smart fitness devices, their linked applications and cloud datacenters are being used for criminal convictions. There is limited research for investigators on wearable devices and specifically exploring evidence identification and methods of extraction. In this paper we present our analysis of Fitbit Versa using Cellebrite UFED and MSAB XRY. We present a clear scope for investigation and data significance based on the findings from our experiments. The data recovery will include logical and physical extractions using devices running Android 9 and iOS 12, comparing between Cellebrite and XRY capabilities. This paper discusses databases and datatypes that can be recovered using different extraction and analysis techniques, providing a robust outlook of data availability. We also discuss the accuracy of recorded data compared to planned test instances, verifying the accuracy of individual data types. The verifiable accuracy of some datatypes could prove useful if such data was required during the evidentiary processes of a forensic investigation.
Gatara, Maradona C., Mzyece, Mjumo.  2021.  5G Network and Haptic-Enabled Internet for Remote Unmanned Aerial Vehicle Applications: A Task-Technology Fit Perspective. 2021 IEEE AFRICON. :1–6.
Haptic communications and 5G networks in conjunction with AI and robotics will augment the human user experience by enabling real-time task performance via the control of objects remotely. This represents a paradigm shift from content delivery-based networks to task-oriented networks for remote skill set delivery. The transmission of user skill sets in remote task performance marks the advent of a haptic-enabled Internet of Skills (IoS), through which the transmission of touch and actuation sensations will be possible. In this proposed research, a conceptual Task-Technology Fit (TTF) model of a haptic-enabled IoS is developed to link human users and haptic-enabled technologies to technology use and task performance between master (control) and remote (controlled) domains to provide a Quality of Experience (QoE) and Quality of Task (QoT) oriented perspective of a Haptic Internet. Future 5G-enabled applications promise the high availability, security, fast reaction speeds, and reliability characteristics required for the transmission of human user skills over large geographical distances. The 5G network and haptic-enabled IoS considered in this research will support a number of critical applications. One such novel scenario in which a TTF of a Haptic Internet can be modelled is the use case of remote-controlled Unmanned Aerial Vehicles (UAVs). This paper is a contribution towards the realization of a 5G network and haptic-enabled QoE-QoT-centric IoS for augmented user task performance. Future empirical results of this research will be useful to understanding the role that varying degrees of a fit between context-specific task and technology characteristics play in influencing the impact of haptic-enabled technology use for real-time immersive remote UAV (drone) control task performance.
Hutto, Kevin, Mooney, Vincent J..  2021.  Sensing with Random Encoding for Enhanced Security in Embedded Systems. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–6.
Embedded systems in physically insecure environments are subject to additional security risk via capture by an adversary. A captured microchip device can be reverse engineered to recover internal buffer data that would otherwise be inaccessible through standard IO mechanisms. We consider an adversary who has sufficient ability to gain all internal bits and logic from a device at the time of capture as an unsolved threat. In this paper we present a novel sensing architecture that enhances embedded system security by randomly encoding sensed values. We randomly encode data at the time of sensing to minimize the amount of plaintext data present on a device in buffer memory. We encode using techniques that are unintelligible to an adversary even with full internal bit knowledge. The encoding is decipherable by a trusted home server, and we have provided an architecture to perform this decoding. Our experimental results show the proposed architecture meets timing requirements needed to perform communications with a satellite utilizing short-burst data, such as in remote sensing telemetry and tracking applications.
Shabalin, A. M., Kaliberda, E. A..  2021.  Development of a Set of Procedures for Providing Remote Access to a Corporate Computer Network by means of the SSH Protocol (Using the Example of the CISCO IOS Operating System). 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–5.
The paper proposes ways to solve the problem of secure remote access to telecommunications’ equipment. The purpose of the study is to develop a set of procedures to ensure secure interaction while working remotely with Cisco equipment using the SSH protocol. This set of measures is a complete list of measures which ensures security of remote connection to a corporate computer network using modern methods of cryptography and network administration technologies. It has been tested on the GNS3 software emulator and Cisco telecommunications equipment and provides a high level of confidentiality and integrity of remote connection to a corporate computer network. In addition, the study detects vulnerabilities in the IOS operating system while running SSH service and suggests methods for their elimination.
Robert Doebbert, Thomas, Krush, Dmytro, Cammin, Christoph, Jockram, Jonas, Heynicke, Ralf, Scholl, Gerd.  2021.  IO-Link Wireless Device Cryptographic Performance and Energy Efficiency. 2021 22nd IEEE International Conference on Industrial Technology (ICIT). 1:1106–1112.
In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS) or Cyber Manufacturing Systems (CMS) can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with different systems using advanced communication technologies. Appropriate wired and wireless communication technologies and standards need to add timing in combination with security concepts to realize the potential improvements in the production process. One of these standards is IO-Link Wireless, which is used for sensor/actuator network operation. In this paper cryptographic performance and energy efficiency of an IO-Link Wireless Device are analyzed. The power consumption and the influence of the cryptographic operations on the trans-mission timing of the IO-Link Wireless protocol are exemplary measured employing a Phytec module based on a CC2650 system-on-chip (SoC) radio transceiver [2]. Confidentiality is considered in combination with the cryptographic performance as well as the energy efficiency. Different cryptographic algorithms are evaluated using the on chip hardware accelerator compared to a cryptographic software implementation.
Rahkema, Kristiina.  2021.  Quality analysis of mobile applications with special focus on security aspects. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1087–1089.
Smart phones and mobile apps have become an essential part of our daily lives. It is necessary to ensure the quality of these apps. Two important aspects of code quality are maintainability and security. The goals of my PhD project are (1) to study code smells, security issues and their evolution in iOS apps and frameworks, (2) to enhance training and teaching using visualisation support, and (3) to support developers in automatically detecting dependencies to vulnerable library elements in their apps. For each of the three tools, dedicated tool support will be provided, i.e., GraphifyEvolution, VisualiseEvolution, and DependencyEvolution respectively. The tool GraphifyEvolution exists and has been applied to analyse code smells in iOS apps written in Swift. The tool has a modular architecture and can be extended to add support for additional languages and external analysis tools. In the remaining two years of my PhD studies, I will complete the other two tools and apply them in case studies with developers in industry as well as in university teaching.
2022-07-29
Butler, Martin, Butler, Rika.  2021.  The Influence of Mobile Operating Systems on User Security Behavior. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :134—138.

Mobile security remains a concern for multiple stakeholders. Safe user behavior is crucial key to avoid and mitigate mobile threats. The research used a survey design to capture key constructs of mobile user threat avoidance behavior. Analysis revealed that there is no significant difference between the two key drivers of secure behavior, threat appraisal and coping appraisal, for Android and iOS users. However, statistically significant differences in avoidance motivation and avoidance behavior of users of the two operating systems were displayed. This indicates that existing threat avoidance models may be insufficient to comprehensively deal with factors that affect mobile user behavior. A newly introduced variable, perceived security, shows a difference in the perceptions of their level of protection among the users of the two operating systems, providing a new direction for research into mobile security.

2022-07-28
ÖZGÜR, Berkecan, Dogru, Ibrahim Alper, Uçtu, Göksel, ALKAN, Mustafa.  2021.  A Suggested Model for Mobile Application Penetration Test Framework. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :18—21.

Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.

2022-01-10
M, Babu, R, Hemchandhar, D, Harish Y., S, Akash, K, Abhishek Todi.  2021.  Voice Prescription with End-to-End Security Enhancements. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :1–8.

The recent analysis indicates more than 250,000 people in the United States of America (USA) die every year because of medical errors. World Health Organisation (WHO) reports states that 2.6 million deaths occur due to medical and its prescription errors. Many of the errors related to the wrong drug/dosage administration by caregivers to patients due to indecipherable handwritings, drug interactions, confusing drug names, etc. The espousal of Mobile-based speech recognition applications will eliminate the errors. This allows physicians to narrate the prescription instead of writing. The application can be accessed through smartphones and can be used easily by everyone. An application program interface has been created for handling requests. Natural language processing is used to read text, interpret and determine the important words for generating prescriptions. The patient data is stored and used according to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) guidelines. The SMS4-BSK encryption scheme is used to provide the data transmission securely over Wireless LAN.

2021-08-11
Morales-Caporal, Roberto, Reyes-Galaviz, Adrián S., Federico Casco-Vásquez, J., Martínez-Hernández, Haydee P..  2020.  Development and Implementation of a Relay Switch Based on WiFi Technology. 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). :1—6.
This article presents the design and development of a relay switch (RS) to handle electrical loads up to 20A using WiFi technology. The hardware design and the implementation methodology are explained, both for the power supply and for the wireless communication that are embedded in the same small printed circuit board. In the same way, the design of the implemented firmware to operate the developed RS is shown. An ESP-12E module is used to achieve wireless communication of the RS, which can be manipulated through a web page using an MQTT protocol or via and iOS or Arduino app. The developed RS presents at least three differentiators in relation to other similar devices on the market: it can handle a higher electrical load, has a design in accordance with national and international security standards and can use different cybersecurity strategies for wireless communication with the purpose of safe and reliable use. Experimental results using a lamp and a single-phase motor as electrical loads demonstrate an excellent performance and reliability of the developed relay switch.
Gallenmüller, Sebastian, Naab, Johannes, Adam, Iris, Carle, Georg.  2020.  5G QoS: Impact of Security Functions on Latency. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Network slicing is considered a key enabler to 5th Generation (5G) communication networks. Mobile network operators may deploy network slices-complete logical networks customized for specific services expecting a certain Quality of Service (QoS). New business models like Network Slice-as-a-Service offerings to customers from vertical industries require negotiated Service Level Agreements (SLA), and network providers need automated enforcement mechanisms to assure QoS during instantiation and operation of slices. In this paper, we focus on ultra-reliable low-latency communication (URLLC). We propose a software architecture for security functions based on off-the-shelf hardware and open-source software and demonstrate, through a series of measurements, that the strict requirements of URLLC services can be achieved. As a real-world example, we perform our experiments using the intrusion prevention system (IPS) Snort to demonstrate the impact of security functions on latency. Our findings lead to the creation of a model predicting the system load that still meets the URLLC latency requirement. We fully disclose the artifacts presented in this paper including pcap traces, measurement tools, and plotting scripts at https://gallenmu.github.io/low-latency.
MILLAR, KYLE, CHENG, ADRIEL, CHEW, HONG GUNN, LIM, CHENG-CHEW.  2020.  Operating System Classification: A Minimalist Approach. 2020 International Conference on Machine Learning and Cybernetics (ICMLC). :143—150.
Operating system (OS) classification is of growing importance to network administrators and cybersecurity analysts alike. The composition of OSs on a network allows for a better quality of device management to be achieved. Additionally, it can be used to identify devices that pose a security risk to the network. However, the sheer number and diversity of OSs that comprise modern networks have vastly increased this management complexity. We leverage insights from social networking theory to provide an encryption-invariant OS classification technique that is quick to train and widely deployable on various network configurations. In particular, we show how an affiliation graph can be used as an input to a machine learning classifier to predict the OS of a device using only the IP addresses for which the device communicates with.We examine the effectiveness of our approach through an empirical analysis of 498 devices on a university campus’ wireless network. In particular, we show our methodology can classify different OS families (i.e., Apple, Windows, and Android OSs) with an accuracy of 99.3%. Furthermore, we extend this study by: 1) examining distinct OSs (e.g., iOS, OS X, and Windows 10); 2) investigating the interval of time required to make an accurate prediction; and, 3) determining the effectiveness of our approach after six months.
McKeown, Sean, Russell, Gordon.  2020.  Forensic Considerations for the High Efficiency Image File Format (HEIF). 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.
The High Efficiency File Format (HEIF) was adopted by Apple in 2017 as their favoured means of capturing images from their camera application, with Android devices such as the Galaxy S10 providing support more recently. The format is positioned to replace JPEG as the de facto image compression file type, touting many modern features and better compression ratios over the aging standard. However, while millions of devices across the world are already able to produce HEIF files, digital forensics research has not given the format much attention. As HEIF is a complex container format, much different from traditional still picture formats, this leaves forensics practitioners exposed to risks of potentially mishandling evidence. This paper describes the forensically relevant features of the HEIF format, including those which could be used to hide data, or cause issues in an investigation, while also providing commentary on the state of software support for the format. Finally, suggestions for current best-practice are provided, before discussing the requirements of a forensically robust HEIF analysis tool.
Joseph, Asha, John Singh, K.  2020.  A GDPR Compliant Proposal to Provide Security in Android and iOS Devices. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—8.
The Security available in personal computers and laptops are not possible in mobile communication, since there is no controlling software such as an operating system. The European Union General Data Protection Regulation (GDPR) will require many organisations throughout the European Union to comply with new requirements that are intended to protect their user's personal data. The responsibilities of the organizations and the penalties related to the protection of personal data of the users are proved to be both organisationally and technically challenging. Under the GDPR's 'privacy by design' and 'privacy by default' requirements, organizations need to prove that they are in control of user data and have taken steps to protect it. There are a large number of organizations that makes use of mobile devices to process personal data of their customers. GDPR mandates that the organization shall be able to manage all devices that handles sensitive data so that the company can implement group updates, restrict apps and networks, and enforce security measures. In this work, we propose a Mobile Device Management solution using the built-in frameworks of Android and iOS mobile platforms which is compatible and incorporates GDPR articles relevant to a small to medium sized organization.
Aljedaani, Bakheet, Ahmad, Aakash, Zahedi, Mansooreh, Babar, M. Ali.  2020.  An Empirical Study on Developing Secure Mobile Health Apps: The Developers' Perspective. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :208—217.
Mobile apps exploit embedded sensors and wireless connectivity of a device to empower users with portable computations, context-aware communication, and enhanced interaction. Specifically, mobile health apps (mHealth apps for short) are becoming integral part of mobile and pervasive computing to improve the availability and quality of healthcare services. Despite the offered benefits, mHealth apps face a critical challenge, i.e., security of health-critical data that is produced and consumed by the app. Several studies have revealed that security specific issues of mHealth apps have not been adequately addressed. The objectives of this study are to empirically (a) investigate the challenges that hinder development of secure mHealth apps, (b) identify practices to develop secure apps, and (c) explore motivating factors that influence secure development. We conducted this study by collecting responses of 97 developers from 25 countries - across 06 continents - working in diverse teams and roles to develop mHealth apps for Android, iOS, and Windows platform. Qualitative analysis of the survey data is based on (i) 8 critical challenges, (ii) taxonomy of best practices to ensure security, and (iii) 6 motivating factors that impact secure mHealth apps. This research provides empirical evidence as practitioners' view and guidelines to develop emerging and next generation of secure mHealth apps.
Feng, Li, Tao, Chen, Bin, Wang, Jianye, Zhang, Song, Qing.  2020.  Research on Information Security Technology of Mobile Application in Electric Power Industry. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :51—54.
With the continuous popularization of smart terminals, Android and IOS systems are the most mainstream mobile operating systems in the market, and their application types and application numbers are constantly increasing. As an open system, the security issues of Android application emerge in endlessly, such as the reverse decompilation of installation package, malicious code injection, application piracy, interface hijacking, SMS hijacking and input monitoring. These security issues will also appear on mobile applications in the power industry, which will not only result in the embezzlement of applied knowledge copyrights but also lead to serious leakage of users' information and even economic losses. It may even result in the remote malicious control of key facilities, which will cause serious social issues. Under the background of the development of smart grid information construction, also with the application and promotion of power services in mobile terminals, information security protection for mobile terminal applications and interactions with the internal system of the power grid has also become an important research direction. While analyzing the risks faced by mobile applications, this article also enumerates and analyzes the necessary measures for risk resolution.
Qadir, Abdalbasit Mohammed, Cooper, Peter.  2020.  GPS-based Mobile Cross-platform Cargo Tracking System with Web-based Application. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—7.
Cross-platform development is becoming widely used by developers, and writing for separate platforms is being replaced by developing a single code base that will work across multiple platforms simultaneously, while reducing cost and time. The purpose of this paper is to demonstrate cross-platform development by creating a cargo tracking system that will work on multiple platforms with web application by tracking cargo using Global Positioning System (GPS), since the transport business has played a vital role in the evolution of human civilization. In this system, Google Flutter technology is used to create a mobile application that works on both Android and iOS platforms at the same time, by providing maps to clients showing their cargo location using Google Map API, as well as providing a web-based application.