Visible to the public Biblio

Filters: Keyword is iOS devices  [Clear All Filters]
2020-07-30
Liu, Junqiu, Wang, Fei, Zhao, Shuang, Wang, Xin, Chen, Shuhui.  2019.  iMonitor, An APP-Level Traffic Monitoring and Labeling System for iOS Devices. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :211—218.
In this paper, we propose the first traffic monitoring and labeling system for iOS devices, named iMonitor, which not just captures mobile network traffic in .pcap files, but also provides comprehensive APP-related and user-related information of captured packets. Through further analysis, one can obtain the exact APP or device where each packet comes from. The labeled traffic can be used in many research areas for mobile security, such as privacy leakage detection and user profiling. Given the implementation methodology of NetworkExtension framework of iOS 9+, APP labels of iMonitor are reliable enough so that labeled traffic can be regarded as training data for any traffic classification methods. Evaluations on real iPhones demonstrate that iMonitor has no notable impact upon user experience even with slight packet latency. Also, the experiment result supports our motivation that mobile traffic monitoring for iOS is absolutely necessary, as traffic generated by different OSes like Android and iOS are different and unreplaceable in researches.
2020-07-27
Dangiwa, Bello Ahmed, Kumar, Smitha S.  2018.  A Business Card Reader Application for iOS devices based on Tesseract. 2018 International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
As the accessibility of high-resolution smartphone camera has increased and an improved computational speed, it is now convenient to build Business Card Readers on mobile phones. The project aims to design and develop a Business Card Reader (BCR) Application for iOS devices, using an open-source OCR Engine - Tesseract. The system accuracy was tested and evaluated using a dataset of 55 digital business cards obtained from an online repository. The accuracy result of the system was up to 74% in terms of both text recognition and data detection. A comparative analysis was carried out against a commercial business card reader application and our application performed vastly reasonable.
2018-02-28
Shen, Y., Wang, H..  2017.  Enhancing data security of iOS client by encryption algorithm. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :366–370.

iOS devices are steadily obtaining popularity of the majority of users because of its some unique advantages in recent years. They can do many things that have been done on a desktop computer or laptop. With the increase in the use of mobile devices by individuals, organizations and government, there are many problems with information security especially some sensitive data related to users. As we all known, encryption algorithm play a significant role in data security. In order to prevent data being intercepted and being leaked during communication, in this paper, we adopted DES encryption algorithm that is fast, simple and suitable for large amounts of data of encryption to encrypt the data of iOS client and adopted the ECC encryption algorithms that was used to overcome the shortcoming of exchanging keys in a securing way before communications. In addition, we should also consider the application isolation and security mechanism of iOS that these features also protect the data securing to some extent. Namely, we propose an encryption algorithm combined the strengths of DES and ECC and make full use of the advantages of hybrid algorithm. Then, we tested and evaluated the performances of the suggested cryptography mechanism within the mobile platform of iOS. The results show that the algorithm has fairly efficiency in practical applications and strong anti-attack ability and it also improves the security and efficiency in data transmission.