Visible to the public Biblio

Filters: Keyword is phishing attacks  [Clear All Filters]
2023-02-03
Sarasjati, Wendy, Rustad, Supriadi, Purwanto, Santoso, Heru Agus, Muljono, Syukur, Abdul, Rafrastara, Fauzi Adi, Ignatius Moses Setiadi, De Rosal.  2022.  Comparative Study of Classification Algorithms for Website Phishing Detection on Multiple Datasets. 2022 International Seminar on Application for Technology of Information and Communication (iSemantic). :448–452.
Phishing has become a prominent method of data theft among hackers, and it continues to develop. In recent years, many strategies have been developed to identify phishing website attempts using machine learning particularly. However, the algorithms and classification criteria that have been used are highly different from the real issues and need to be compared. This paper provides a detailed comparison and evaluation of the performance of several machine learning algorithms across multiple datasets. Two phishing website datasets were used for the experiments: the Phishing Websites Dataset from UCI (2016) and the Phishing Websites Dataset from Mendeley (2018). Because these datasets include different types of class labels, the comparison algorithms can be applied in a variety of situations. The tests showed that Random Forest was better than other classification methods, with an accuracy of 88.92% for the UCI dataset and 97.50% for the Mendeley dataset.
2022-10-12
Kumar, Yogendra, Subba, Basant.  2021.  A lightweight machine learning based security framework for detecting phishing attacks. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :184—188.
A successful phishing attack is prelude to various other severe attacks such as login credentials theft, unauthorized access to user’s confidential data, malware and ransomware infestation of victim’s machine etc. This paper proposes a real time lightweight machine learning based security framework for detection of phishing attacks through analysis of Uniform Resource Locators (URLs). The proposed framework initially extracts a set of highly discriminating and uncorrelated features from the URL string corpus. These extracted features are then used to transform the URL strings into their corresponding numeric feature vectors, which are eventually used to train various machine learning based classifier models for identification of malicious phishing URLs. Performance analysis of the proposed security framework on two well known datasets: Kaggle dataset and UNB dataset shows that it is capable of detecting malicious phishing URLs with high precision, while at the same time maintain a very low level of false positive rate. The proposed framework is also shown to outperform other similar security frameworks proposed in the literature.121https://www.kaggle.com/antonyj453/ur1dataset2https://www.unb.ca/cic/datasets/ur1-2016.htm1
2020-09-28
Rodriguez, German, Torres, Jenny, Flores, Pamela, Benavides, Eduardo, Nuñez-Agurto, Daniel.  2019.  XSStudent: Proposal to Avoid Cross-Site Scripting (XSS) Attacks in Universities. 2019 3rd Cyber Security in Networking Conference (CSNet). :142–149.
QR codes are the means to offer more direct and instant access to information. However, QR codes have shown their deficiency, being a very powerful attack vector, for example, to execute phishing attacks. In this study, we have proposed a solution that allows controlling access to the information offered by QR codes. Through a scanner designed in APP Inventor which has been called XSStudent, a system has been built that analyzes the URLs obtained and compares them with a previously trained system. This study was executed by means of a controlled attack to the users of the university who through a flyer with a QR code and a fictional link accessed an infected page with JavaScript code that allowed a successful cross-site scripting attack. The results indicate that 100% of the users are vulnerable to this type of attacks, so also, with our proposal, an attack executed in the universities using the Beef software would be totally blocked.
2020-04-17
Oest, Adam, Safaei, Yeganeh, Doupé, Adam, Ahn, Gail-Joon, Wardman, Brad, Tyers, Kevin.  2019.  PhishFarm: A Scalable Framework for Measuring the Effectiveness of Evasion Techniques against Browser Phishing Blacklists. 2019 IEEE Symposium on Security and Privacy (SP). :1344—1361.

Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.

2020-04-10
Huang, Yongjie, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection Via Capsule-Based Neural Network. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :22—26.

As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.

Baral, Gitanjali, Arachchilage, Nalin Asanka Gamagedara.  2019.  Building Confidence not to be Phished Through a Gamified Approach: Conceptualising User's Self-Efficacy in Phishing Threat Avoidance Behaviour. 2019 Cybersecurity and Cyberforensics Conference (CCC). :102—110.

Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.

Chapla, Happy, Kotak, Riddhi, Joiser, Mittal.  2019.  A Machine Learning Approach for URL Based Web Phishing Using Fuzzy Logic as Classifier. 2019 International Conference on Communication and Electronics Systems (ICCES). :383—388.

Phishing is the major problem of the internet era. In this era of internet the security of our data in web is gaining an increasing importance. Phishing is one of the most harmful ways to unknowingly access the credential information like username, password or account number from the users. Users are not aware of this type of attack and later they will also become a part of the phishing attacks. It may be the losses of financial found, personal information, reputation of brand name or trust of brand. So the detection of phishing site is necessary. In this paper we design a framework of phishing detection using URL.

2020-02-17
Legg, Phil, Blackman, Tim.  2019.  Tools and Techniques for Improving Cyber Situational Awareness of Targeted Phishing Attacks. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–4.

Phishing attacks continue to be one of the most common attack vectors used online today to deceive users, such that attackers can obtain unauthorised access or steal sensitive information. Phishing campaigns often vary in their level of sophistication, from mass distribution of generic content, such as delivery notifications, online purchase orders, and claims of winning the lottery, through to bespoke and highly-personalised messages that convincingly impersonate genuine communications (e.g., spearphishing attacks). There is a distinct trade-off here between the scale of an attack versus the effort required to curate content that is likely to convince an individual to carry out an action (typically, clicking a malicious hyperlink). In this short paper, we conduct a preliminary study on a recent realworld incident that strikes a balance between attacking at scale and personalised content. We adopt different visualisation tools and techniques for better assessing the scale and impact of the attack, that can be used both by security professionals to analyse the security incident, but could also be used to inform employees as a form of security awareness and training. We pitched the approach to IT professionals working in information security, who believe this may provide improved awareness of how targeted phishing campaigns can impact an organisation, and could contribute towards a pro-active step of how analysts will examine and mitigate the impact of future attacks across the organisation.

2019-11-26
Baykara, Muhammet, Gürel, Zahit Ziya.  2018.  Detection of Phishing Attacks. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-5.

Phishing is a form of cybercrime where an attacker imitates a real person / institution by promoting them as an official person or entity through e-mail or other communication mediums. In this type of cyber attack, the attacker sends malicious links or attachments through phishing e-mails that can perform various functions, including capturing the login credentials or account information of the victim. These e-mails harm victims because of money loss and identity theft. In this study, a software called "Anti Phishing Simulator'' was developed, giving information about the detection problem of phishing and how to detect phishing emails. With this software, phishing and spam mails are detected by examining mail contents. Classification of spam words added to the database by Bayesian algorithm is provided.

2019-05-01
Shirsat, S. D..  2018.  Demonstrating Different Phishing Attacks Using Fuzzy Logic. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :57-61.

Phishing has increased tremendously over last few years and it has become a serious threat to global security and economy. Existing literature dealing with the problem of phishing is scarce. Phishing is a deception technique that uses a combination of technology and social engineering to acquire sensitive information such as online banking passwords, credit card or bank account details [2]. Phishing can be done through emails and websites to collect confidential information. Phishers design fraudulent websites which look similar to the legitimate websites and lure the user to visit the malicious website. Therefore, the users must be aware of malicious websites to protect their sensitive data [1]. But it is very difficult to distinguish between legitimate and fake website especially for nontechnical users [4]. Moreover, phishing sites are growing rapidly. The aim of this paper is to demonstrate phishing detection using fuzzy logic and interpreting results using different defuzzification methods.

2017-12-20
Williams, N., Li, S..  2017.  Simulating Human Detection of Phishing Websites: An Investigation into the Applicability of the ACT-R Cognitive Behaviour Architecture Model. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

The prevalence and effectiveness of phishing attacks, despite the presence of a vast array of technical defences, are due largely to the fact that attackers are ruthlessly targeting what is often referred to as the weakest link in the system - the human. This paper reports the results of an investigation into how end users behave when faced with phishing websites and how this behaviour exposes them to attack. Specifically, the paper presents a proof of concept computer model for simulating human behaviour with respect to phishing website detection based on the ACT-R cognitive architecture, and draws conclusions as to the applicability of this architecture to human behaviour modelling within a phishing detection scenario. Following the development of a high-level conceptual model of the phishing website detection process, the study draws upon ACT-R to model and simulate the cognitive processes involved in judging the validity of a representative webpage based primarily around the characteristics of the HTTPS padlock security indicator. The study concludes that despite the low-level nature of the architecture and its very basic user interface support, ACT-R possesses strong capabilities which map well onto the phishing use case, and that further work to more fully represent the range of human security knowledge and behaviours in an ACT-R model could lead to improved insights into how best to combine technical and human defences to reduce the risk to end users from phishing attacks.

Abdelhamid, N., Thabtah, F., Abdel-jaber, H..  2017.  Phishing detection: A recent intelligent machine learning comparison based on models content and features. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :72–77.

In the last decade, numerous fake websites have been developed on the World Wide Web to mimic trusted websites, with the aim of stealing financial assets from users and organizations. This form of online attack is called phishing, and it has cost the online community and the various stakeholders hundreds of million Dollars. Therefore, effective counter measures that can accurately detect phishing are needed. Machine learning (ML) is a popular tool for data analysis and recently has shown promising results in combating phishing when contrasted with classic anti-phishing approaches, including awareness workshops, visualization and legal solutions. This article investigates ML techniques applicability to detect phishing attacks and describes their pros and cons. In particular, different types of ML techniques have been investigated to reveal the suitable options that can serve as anti-phishing tools. More importantly, we experimentally compare large numbers of ML techniques on real phishing datasets and with respect to different metrics. The purpose of the comparison is to reveal the advantages and disadvantages of ML predictive models and to show their actual performance when it comes to phishing attacks. The experimental results show that Covering approach models are more appropriate as anti-phishing solutions, especially for novice users, because of their simple yet effective knowledge bases in addition to their good phishing detection rate.

2017-03-07
Lakhita, Yadav, S., Bohra, B., Pooja.  2015.  A review on recent phishing attacks in Internet. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :1312–1315.

The development of internet comes with the other domain that is cyber-crime. The record and intelligently can be exposed to a user of illegal activity so that it has become important to make the technology reliable. Phishing techniques include domain of email messages. Phishing emails have hosted such a phishing website, where a click on the URL or the malware code as executing some actions to perform is socially engineered messages. Lexically analyzing the URLs can enhance the performance and help to differentiate between the original email and the phishing URL. As assessed in this study, in addition to textual analysis of phishing URL, email classification is successful and results in a highly precise anti phishing.

2015-10-06
Welk, A., Zielinska, O., Tembe, R., Xe, G., Hong, K. W., Murphy-Hill, E., Mayhorn, C. B..  In Press.  Will the “Phisher-men” Reel you in? Assessing Individual Differences in a Phishing Detection Task International Journal of Cyber Behavior, Psychology, and Learning. .

Phishing is an act of technology-based deception that targets individuals to obtain information. To minimize the number of phishing attacks, factors that influence the ability to identify phishing attempts must be examined. The present study aimed to determine how individual differences relate to performance on a phishing task. Undergraduate students completed a questionnaire designed to assess impulsivity, trust, personality characteristics, and Internet/security habits. Participants performed an email task where they had to discriminate between legitimate emails and phishing attempts. Researchers assessed performance in terms of correctly identifying all email types (overall accuracy) as well as accuracy in identifying phishing emails (phishing accuracy). Results indicated that overall and phishing accuracy each possessed unique trust, personality, and impulsivity predictors, but shared one significant behavioral predictor. These results present distinct predictors of phishing susceptibility that should be incorporated in the development of anti-phishing technology and training.

2015-04-30
Biedermann, S., Ruppenthal, T., Katzenbeisser, S..  2014.  Data-centric phishing detection based on transparent virtualization technologies. Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on. :215-223.

We propose a novel phishing detection architecture based on transparent virtualization technologies and isolation of the own components. The architecture can be deployed as a security extension for virtual machines (VMs) running in the cloud. It uses fine-grained VM introspection (VMI) to extract, filter and scale a color-based fingerprint of web pages which are processed by a browser from the VM's memory. By analyzing the human perceptual similarity between the fingerprints, the architecture can reveal and mitigate phishing attacks which are based on redirection to spoofed web pages and it can also detect “Man-in-the-Browser” (MitB) attacks. To the best of our knowledge, the architecture is the first anti-phishing solution leveraging virtualization technologies. We explain details about the design and the implementation and we show results of an evaluation with real-world data.