Visible to the public Biblio

Filters: Keyword is forensic readiness  [Clear All Filters]
2022-02-25
Sadineni, Lakshminarayana, Pilli, Emmanuel S., Battula, Ramesh Babu.  2021.  Ready-IoT: A Novel Forensic Readiness Model for Internet of Things. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :89–94.
Internet of Things (IoT) networks are often attacked to compromise the security and privacy of application data and disrupt the services offered by them. The attacks are being launched at different layers of IoT protocol stack by exploiting their inherent weaknesses. Forensic investigations need substantial artifacts and datasets to support the decisions taken during analysis and while attributing the attack to the adversary. Network provenance plays a crucial role in establishing the relationships between network entities. Hence IoT networks can be made forensic ready so that network provenance may be collected to help in constructing these artifacts. The paper proposes Ready-IoT, a novel forensic readiness model for IoT environment to collect provenance from the network which comprises of both network parameters and traffic. A link layer dataset, Link-IoT Dataset is also generated by querying provenance graphs. Finally, Link-IoT dataset is compared with other IoT datasets to draw a line of difference and applicability to IoT environments. We believe that the proposed features have the potential to detect the attacks performed on the IoT network.
2021-03-29
Lakhdhar, Y., Rekhis, S., Sabir, E..  2020.  A Game Theoretic Approach For Deploying Forensic Ready Systems. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–6.
Cyber incidents are occurring every day using various attack strategies. Deploying security solutions with strong configurations will reduce the attack surface and improve the forensic readiness, but will increase the security overhead and cost. In contrast, using moderate or low security configurations will reduce that overhead, but will inevitably decrease the investigation readiness. To avoid the use of cost-prohibitive approaches in developing forensic-ready systems, we present in this paper a game theoretic approach for deploying an investigation-ready infrastructure. The proposed game is a non-cooperative two-player game between an adaptive cyber defender that uses a cognitive security solution to increase the investigation readiness and reduce the attackers' untraceability, and a cyber attacker that wants to execute non-provable attacks with a low cost. The cognitive security solution takes its strategic decision, mainly based on its ability to make forensic experts able to differentiate between provable identifiable, provable non-identifiable, and non-provable attack scenarios, starting from the expected evidences to be generated. We study the behavior of the two strategic players, looking for a mixed Nash equilibrium during competition and computing the probabilities of attacking and defending. A simulation is conducted to prove the efficiency of the proposed model in terms of the mean percentage of gained security cost, the number of stepping stones that an attacker creates and the rate of defender false decisions compared to two different approaches.
2018-03-05
Mohlala, M., Ikuesan, A. R., Venter, H. S..  2017.  User Attribution Based on Keystroke Dynamics in Digital Forensic Readiness Process. 2017 IEEE Conference on Application, Information and Network Security (AINS). :124–129.

As the development of technology increases, the security risk also increases. This has affected most organizations, irrespective of size, as they depend on the increasingly pervasive technology to perform their daily tasks. However, the dependency on technology has introduced diverse security vulnerabilities in organizations which requires a reliable preparedness for probable forensic investigation of the unauthorized incident. Keystroke dynamics is one of the cost-effective methods for collecting potential digital evidence. This paper presents a keystroke pattern analysis technique suitable for the collection of complementary potential digital evidence for forensic readiness. The proposition introduced a technique that relies on the extraction of reliable behavioral signature from user activity. Experimental validation of the proposition demonstrates the effectiveness of proposition using a multi-scheme classifier. The overall goal is to have forensically sound and admissible keystroke evidence that could be presented during the forensic investigation to minimize the costs and time of the investigation.