Biblio
Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.
5G is envisioned as a transformation of the communications architecture towards multi-tenant, scalable and flexible infrastructure, which heavily relies on virtualised network functions and programmable networks. In particular, orchestration will advance one step further in blending both compute and data resources, usually dedicated to virtualisation technologies, and network resources into so-called slices. Although 5G security is being developed in current working groups, slice security is seldom addressed. In this work, we propose to integrate security in the slice life cycle, impacting its management and orchestration that relies on the virtualization/softwarisation infrastructure. The proposed security architecture connects the demands specified by the tenants through as-a-service mechanisms with built-in security functions relying on the ability to combine enforcement and monitoring functions within the software-defined network infrastructure. The architecture exhibits desirable properties such as isolating slices down to the hardware resources or monitoring service-level performance.