Visible to the public Biblio

Filters: Keyword is power generation economics  [Clear All Filters]
2020-11-02
Carvalho, Martha R, Bezerra, Bernardo, Dall'Orto, Celso, Carlos, Luiz, Rosenblatt, Jose, Veiga, Mario.  2018.  Methodology for determining the energy deficit penalty function for hydrothermal dispatch. 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE). :1—6.
The penalization of the objective function due to energy deficits is a key element for determining the operational policy of hydroelectric reservoirs. Its definition impacts not only operations, but also system expansion. Brazil historically defined these penalties with basis on a proxy of the economic deficit cost, a value in \$/MWh obtained with aid of the Input-Output Matrix. We propose an approach where these penalties are obtained in order to minimize the operation cost and cost of rationing of the system, considering a criterion of security of supply. A case study with data from the Brazilian System illustrates its application.
2020-03-16
Karpenko, V.I., Vasilev, S.P., Boltunov, A.P., Voloshin, E.A., Voloshin, A. A..  2019.  Intelligent Consumers Device and Cybersecurity of Load Management in Microgrids. 2019 2nd International Youth Scientific and Technical Conference on Relay Protection and Automation (RPA). :1–10.
The digitalization of the electric power industry and the development of territories isolated from the unified energy system are priorities in the development of the energy sector. Thanks to innovative solutions and digital technologies, it becomes possible to make more effective managing and monitoring. Such solution is IoT platform with intelligent control system implemented by software.
2020-03-02
Zhao, Min, Li, Shunxin, Xiao, Dong, Zhao, Guoliang, Li, Bo, Liu, Li, Chen, Xiangyu, Yang, Min.  2019.  Consumption Ability Estimation of Distribution System Interconnected with Microgrids. 2019 IEEE International Conference on Energy Internet (ICEI). :345–350.
With fast development of distributed generation, storages and control techniques, a growing number of microgrids are interconnected with distribution networks. Microgrid capacity that a local distribution system can afford, is important to distribution network planning and microgrids well-organized integration. Therefore, this paper focuses on estimating consumption ability of distribution system interconnected with microgrids. The method to judge rationality of microgrids access plan is put forward, and an index system covering operation security, power quality and energy management is proposed. Consumption ability estimation procedure based on rationality evaluation and interactions is built up then, and requirements on multi-scenario simulation are presented. Case study on a practical distribution system design with multi-microgrids guarantees the validity and reasonableness of the proposed method and process. The results also indicate construction and reinforcement directions for the distribution network.
2019-06-24
Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.

2019-05-01
Borra, V. S., Debnath, K..  2018.  Dynamic programming for solving unit commitment and security problems in microgrid systems. 2018 IEEE International Conference on Innovative Research and Development (ICIRD). :1–6.

In order to meet the demand of electrical energy by consumers, utilities have to maintain the security of the system. This paper presents a design of the Microgrid Central Energy Management System (MCEMS). It will plan operation of the system one-day advance. The MCEMS will adjust itself during operation if a fault occurs anywhere in the generation system. The proposed approach uses Dynamic Programming (DP) algorithm solves the Unit Commitment (UC) problem and at the same time enhances the security of power system. A case study is performed with ten subsystems. The DP is used to manage the operation of the subsystems and determines the UC on the situation demands. Faults are applied to the system and the DP corrects the UC problem with appropriate power sources to maintain reliability supply. The MATLAB software has been used to simulate the operation of the system.

2018-03-05
Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.

Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.

Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.

Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.

Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.