Biblio
The use of public key cryptosystems ranges from securely encrypting bitcoin transactions and creating digital signatures for non-repudiation. The cryptographic systems security of public key depends on the complexity in solving mathematical problems. Quantum computers pose a threat to the current day algorithms used. This research presents analysis of two Hash-based Signature Schemes (MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation takes 0.0187s, and verification time for the signature is 0.0164s. The W-OTS key generation is 0.002s. To generate a signature in W-OTS, it takes 0.001s and verification time for the signature is 0.0002s. Lastly MSS Key generation, signature generation and verification has high values which are 16.290s, 17.474s, and 13.494s respectively. Based on the results, W-OTS is recommended for bitcoin transaction security because of its efficiency and ability to resist quantum computer attacks on the bitcoin network.
Bitcoin, a peer-to-peer payment system and digital currency, is often involved in illicit activities such as scamming, ransomware attacks, illegal goods trading, and thievery. At the time of writing, the Bitcoin ecosystem has not yet been mapped and as such there is no estimate of the share of illicit activities. This paper provides the first estimation of the portion of cyber-criminal entities in the Bitcoin ecosystem. Our dataset consists of 854 observations categorised into 12 classes (out of which 5 are cybercrime-related) and a total of 100,000 uncategorised observations. The dataset was obtained from the data provider who applied three types of clustering of Bitcoin transactions to categorise entities: co-spend, intelligence-based, and behaviour-based. Thirteen supervised learning classifiers were then tested, of which four prevailed with a cross-validation accuracy of 77.38%, 76.47%, 78.46%, 80.76% respectively. From the top four classifiers, Bagging and Gradient Boosting classifiers were selected based on their weighted average and per class precision on the cybercrime-related categories. Both models were used to classify 100,000 uncategorised entities, showing that the share of cybercrime-related is 29.81% according to Bagging, and 10.95% according to Gradient Boosting with number of entities as the metric. With regard to the number of addresses and current coins held by this type of entities, the results are: 5.79% and 10.02% according to Bagging; and 3.16% and 1.45% according to Gradient Boosting.