Biblio
Relevance feedback can be considered as a learning problem. It has been extensively used to improve the performance of retrieval multimedia information. In this paper, after the relevance feedback upon content-based image retrieval (CBIR) discussed, a hybrid learning scheme on multi-target retrieval (MTR) with relevance feedback was proposed. Suppose the symbolic image database (SID) of object-level with combined image metadata and feature model was constructed. During the interactive query for remote sensing image, we calculate the similarity metric so as to get the relevant image sets from the image library. For the purpose of further improvement of the precision of image retrieval, a hybrid learning scheme parameter also need to be chosen. As a result, the idea of our hybrid learning scheme contains an exception maximization algorithm (EMA) used for retrieving the most relevant images from SID and an algorithm called supported vector machine (SVM) with relevance feedback used for learning the feedback information substantially. Experimental results show that our hybrid learning scheme with relevance feedback on MTR can improve the performance and accuracy compared the basic algorithms.
Investigations on the charge of possessing child pornography usually require manual forensic image inspection in order to collect evidence. When storage devices are confiscated, law enforcement authorities are hence often faced with massive image datasets which have to be screened within a limited time frame. As the ability to concentrate and time are highly limited factors of a human investigator, we believe that intelligent algorithms can effectively assist the inspection process by rearranging images based on their content. Thus, more relevant images can be discovered within a shorter time frame, which is of special importance in time-critical investigations of triage character. While currently employed techniques are based on black- and whitelisting of known images, we propose to use deep learning algorithms trained for the detection of pornographic imagery, as they are able to identify new content. In our approach, we evaluated three state-of-the-art neural networks for the detection of pornographic images and employed them to rearrange simulated datasets of 1 million images containing a small fraction of pornographic content. The rearrangement of images according to their content allows a much earlier detection of relevant images during the actual manual inspection of the dataset, especially when the percentage of relevant images is low. With our approach, the first relevant image could be discovered between positions 8 and 9 in the rearranged list on average. Without using our approach of image rearrangement, the first relevant image was discovered at position 1,463 on average.