Visible to the public Biblio

Filters: Keyword is Optical wavelength conversion  [Clear All Filters]
2020-12-02
Nleya, B., Khumalo, P., Mutsvangwa, A..  2019.  A Restricted Intermediate Node Buffering-Based Contention Control Scheme for OBS Networks. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1—6.
Optical burst switching (OBS) is a candidate switching paradigm for future backbone all-optical networks. However, data burst contention can be a major problem especially as the number of lightpath connections as well as the overall network radius increases. Furthermore, the absence of or limited buffering provision in core nodes, coupled with the standard one-way resources signaling aggravate contention occurrences resulting in some of the contending bursts being discarded as a consequence. Contention avoidance as well as resolution measures can be applied in such networks in order to resolve any contention issues. In that way, the offered quality of service (QoS) as well as the network performance will remain consistent and reliable. In particular, to maintain the cost effectiveness of OBS deployment, restricted intermediate buffering can be implemented to buffer contending bursts that have already traversed much of the network on their way to the intended destination. Hence in this paper we propose and analyze a restricted intermediate Node Buffering-based routing and wavelength assignment scheme (RI-RWA) scheme to address contention occurrences as well as prevent deletion of contending bursts. The scheme primarily prioritizes the selection of primary as well as deflection paths for establishing lightpath connections paths as a function of individual wavelength contention performances. It further facilitates and allows partial intermediate buffering provisioning for any data bursts that encounter contention after having already propagated more than half the network's diameter. We evaluate the scheme's performance by simulation and obtained results show that the scheme indeed does improve on key network performance metrics such as fairness, load balancing as well as throughput.
2019-09-30
Hohlfeld, J., Czoschke, P., Asselin, P., Benakli, M..  2019.  Improving Our Understanding of Measured Jitter (in HAMR). IEEE Transactions on Magnetics. 55:1–11.

The understanding of measured jitter is improved in three ways. First, it is shown that the measured jitter is not only governed by written-in jitter and the reader resolution along the cross-track direction but by remanence noise in the vicinity of transitions and the down-track reader resolution as well. Second, a novel data analysis scheme is introduced that allows for an unambiguous separation of these two contributions. Third, based on data analyses involving the first two learnings and micro-magnetic simulations, we identify and explain the root causes for variations of jitter with write current (WC) (write field), WC overshoot amplitude (write-field rise time), and linear disk velocity measured for heat-assisted magnetic recording.

2015-04-30
Montague, E., Jie Xu, Chiou, E..  2014.  Shared Experiences of Technology and Trust: An Experimental Study of Physiological Compliance Between Active and Passive Users in Technology-Mediated Collaborative Encounters. Human-Machine Systems, IEEE Transactions on. 44:614-624.

The aim of this study is to examine the utility of physiological compliance (PC) to understand shared experience in a multiuser technological environment involving active and passive users. Common ground is critical for effective collaboration and important for multiuser technological systems that include passive users since this kind of user typically does not have control over the technology being used. An experiment was conducted with 48 participants who worked in two-person groups in a multitask environment under varied task and technology conditions. Indicators of PC were measured from participants' cardiovascular and electrodermal activities. The relationship between these PC indicators and collaboration outcomes, such as performance and subjective perception of the system, was explored. Results indicate that PC is related to group performance after controlling for task/technology conditions. PC is also correlated with shared perceptions of trust in technology among group members. PC is a useful tool for monitoring group processes and, thus, can be valuable for the design of collaborative systems. This study has implications for understanding effective collaboration.