Biblio
This paper addresses the problem of state estimation of a linear time-invariant system when some of the sensors or/and actuators are under adversarial attack. In our set-up, the adversarial agent attacks a sensor (actuator) by manipulating its measurement (input), and we impose no constraint on how the measurements (inputs) are corrupted. We introduce the notion of ``sparse strong observability'' to characterize systems for which the state estimation is possible, given bounds on the number of attacked sensors and actuators. Furthermore, we develop a secure state estimator based on Satisfiability Modulo Theory (SMT) solvers.
In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.