Biblio
Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.
We present a gradient-based attack against SVM-based forensic techniques relying on high-dimensional SPAM features. As opposed to prior work, the attack works directly in the pixel domain even if the relationship between pixel values and SPAM features can not be inverted. The proposed method relies on the estimation of the gradient of the SVM output with respect to pixel values, however it departs from gradient descent methodology due to the necessity of preserving the integer nature of pixels and to reduce the effect of the attack on image quality. A fast algorithm to estimate the gradient is also introduced to reduce the complexity of the attack. We tested the proposed attack against SVM detection of histogram stretching, adaptive histogram equalization and median filtering. In all cases the attack succeeded in inducing a decision error with a very limited distortion, the PSNR between the original and the attacked images ranging from 50 to 70 dBs. The attack is also effective in the case of attacks with Limited Knowledge (LK) when the SVM used by the attacker is trained on a different dataset with respect to that used by the analyst.
We propose a dense continuous-time tracking and mapping method for RGB-D cameras. We parametrize the camera trajectory using continuous B-splines and optimize the trajectory through dense, direct image alignment. Our method also directly models rolling shutter in both RGB and depth images within the optimization, which improves tracking and reconstruction quality for low-cost CMOS sensors. Using a continuous trajectory representation has a number of advantages over a discrete-time representation (e.g. camera poses at the frame interval). With splines, less variables need to be optimized than with a discrete representation, since the trajectory can be represented with fewer control points than frames. Splines also naturally include smoothness constraints on derivatives of the trajectory estimate. Finally, the continuous trajectory representation allows to compensate for rolling shutter effects, since a pose estimate is available at any exposure time of an image. Our approach demonstrates superior quality in tracking and reconstruction compared to approaches with discrete-time or global shutter assumptions.
Authorities like the Federal Financial Institutions Examination Council in the US and the European Central Bank in Europe have stepped up their expected minimum security requirements for financial institutions, including the requirements for risk analysis. In a previous article, we introduced a visual tool and a systematic way to estimate the probability of a successful incident response process, which we called an incident response tree (IRT). In this article, we present several scenarios using the IRT which could be used in a risk analysis of online financial services concerning fraud prevention. By minimizing the problem of underreporting, we are able to calculate the conditional probabilities of prevention, detection, and response in the incident response process of a financial institution. We also introduce a quantitative model for estimating expected loss from fraud, and conditional fraud value at risk, which enables a direct comparison of risk among online banking channels in a multi-channel environment.
This study presents spatial analysis of Dengue Fever (DF) outbreak using Geographic Information System (GIS) in the state of Selangor, Malaysia. DF is an Aedes mosquito-borne disease. The aim of the study is to map the spread of DF outbreak in Selangor by producing a risk map while the objective is to identify high risk areas of DF by producing a risk map using GIS tools. The data used was DF dengue cases in 2012 obtained from Ministry of Health, Malaysia. The analysis was carried out using Moran's I, Average Nearest Neighbor (ANN), Kernel Density Estimation (KDE) and buffer analysis using GIS. From the Moran's I analysis, the distribution pattern of DF in Selangor clustered. From the ANN analysis, the result shows a dispersed pattern where the ratio is more than 1. The third analysis was based on KDE to locate the hot spot location. The result shows that some districts are classified as high risk areas which are Ampang, Damansara, Kapar, Kajang, Klang, Semenyih, Sungai Buloh and Petaling. The buffer analysis, area ranges between 200m. to 500m. above sea level shows a clustered pattern where the highest frequent cases in the year are at the same location. It was proven that the analysis based on the spatial statistic, spatial interpolation, and buffer analysis can be used as a method in controlling and locating the DF affection with the aid of GIS.
In this paper, a new method for quantitative evaluation of the security of cyber-physical systems (CPSs) is proposed. The proposed method models the different classes of adversarial attacks against CPSs, including cross-domain attacks, i.e., cyber-to-cyber and cyber-to-physical attacks. It also takes the secondary consequences of attacks on CPSs into consideration. The intrusion process of attackers has been modeled using attack graph and the consequence estimation process of the attack has been investigated using process model. The security attributes and the special parameters involved in the security analysis of CPSs, have been identified and considered. The quantitative evaluation has been done using the probability of attacks, time-to-shutdown of the system and security risks. The validation phase of the proposed model is performed as a case study by applying it to a boiling water power plant and estimating the suitable security measures.
Threat evaluation is concerned with estimating the intent, capability and opportunity of detected objects in relation to our own assets in an area of interest. To infer whether a target is threatening and to which degree is far from a trivial task. Expert operators have normally to their aid different support systems that analyze the incoming data and provide recommendations for actions. Since the ultimate responsibility lies in the operators, it is crucial that they trust and know how to configure and use these systems, as well as have a good understanding of their inner workings, strengths and limitations. To limit the negative effects of inadequate cooperation between the operators and their support systems, this paper presents a design proposal that aims at making the threat evaluation process more transparent. We focus on the initialization, configuration and preparation phases of the threat evaluation process, supporting the user in the analysis of the behavior of the system considering the relevant parameters involved in the threat estimations. For doing so, we follow a known design process model and we implement our suggestions in a proof-of-concept prototype that we evaluate with military expert system designers.