Visible to the public Biblio

Filters: Keyword is hit rate  [Clear All Filters]
2022-01-31
Al-Qtiemat, Eman, Jafar, Iyad.  2021.  Intelligent Cache Replacement Algorithm for Web Proxy Caching based on Multi-level K-means Clustering. 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :278—282.
Proxy web caching is usually employed to maximize the efficiency and utilization of the network and the origin servers while reducing the request latency. However, and due to the limited cache size, some replacement policy has to be enforced in order to decide on the object(s) to be evicted from the cache once it is full. This paper introduces the use of the K-mean clustering to categorize the objects in the cache into groups of different priorities. This categorization is then used for replacement purposes such that the object(s) of lowest priority are chosen for eviction. The proposed improved the hit rate and the byte hit rate of the cache when compared to conventional and intelligent web proxy caching algorithms.
2020-02-18
Talluri, Sacheendra, Iosup, Alexandru.  2019.  Efficient Estimation of Read Density When Caching for Big Data Processing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :502–507.

Big data processing systems are becoming increasingly more present in cloud workloads. Consequently, they are starting to incorporate more sophisticated mechanisms from traditional database and distributed systems. We focus in this work on the use of caching policies, which for big data raise important new challenges. Not only they must respond to new variants of the trade-off between hit rate, response time, and the space consumed by the cache, but they must do so at possibly higher volume and velocity than web and database workloads. Previous caching policies have not been tested experimentally with big data workloads. We address these challenges in this work. We propose the Read Density family of policies, which is a principled approach to quantify the utility of cached objects through a family of utility functions that depend on the frequency of reads of an object. We further design the Approximate Histogram, which is a policy-based technique based on an array of counters. This technique promises to achieve runtime-space efficient computation of the metric required by the cache policy. We evaluate through trace-based simulation the caching policies from the Read Density family, and compare them with over ten state-of-the-art alternatives. We use two workload traces representative for big data processing, collected from commercial Spark and MapReduce deployments. While we achieve comparable performance to the state-of-art with less parameters, meaningful performance improvement for big data workloads remain elusive.

2019-01-16
Hasslinger, G., Ntougias, K., Hasslinger, F., Hohlfeld, O..  2018.  Comparing Web Cache Implementations for Fast O(1) Updates Based on LRU, LFU and Score Gated Strategies. 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–7.
To be applicable to high user request workloads, web caching strategies benefit from low implementation and update effort. In this regard, the Least Recently Used (LRU) replacement principle is a simple and widely-used method. Despite its popularity, LRU has deficits in the achieved hit rate performance and cannot consider transport and network optimization criteria for selecting content to be cached. As a result, many alternatives have been proposed in the literature, which improve the cache performance at the cost of higher complexity. In this work, we evaluate the implementation complexity and runtime performance of LRU, Least Frequently Used (LFU), and score based strategies in the class of fast O(1) updates with constant effort per request. We implement Window LFU (W-LFU) within this class and show that O(1) update effort can be achieved. We further compare fast update schemes of Score Gated LRU and new Score Gated Polling (SGP). SGP is simpler than LRU and provides full flexibility for arbitrary score assessment per data object as information basis for performance optimization regarding network cost and quality measures.
2018-03-26
Hasslinger, G., Kunbaz, M., Hasslinger, F., Bauschert, T..  2017.  Web Caching Evaluation from Wikipedia Request Statistics. 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). :1–6.

Wikipedia is one of the most popular information platforms on the Internet. The user access pattern to Wikipedia pages depends on their relevance in the current worldwide social discourse. We use publically available statistics about the top-1000 most popular pages on each day to estimate the efficiency of caches for support of the platform. While the data volumes are moderate, the main goal of Wikipedia caches is to reduce access times for page views and edits. We study the impact of most popular pages on the achievable cache hit rate in comparison to Zipf request distributions and we include daily dynamics in popularity.