Visible to the public Biblio

Filters: Keyword is cyber security attacks  [Clear All Filters]
2020-07-03
Pan, Jonathan.  2019.  Physical Integrity Attack Detection of Surveillance Camera with Deep Learning based Video Frame Interpolation. 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :79—85.

Surveillance cameras, which is a form of Cyber Physical System, are deployed extensively to provide visual surveillance monitoring of activities of interest or anomalies. However, these cameras are at risks of physical security attacks against their physical attributes or configuration like tampering of their recording coverage, camera positions or recording configurations like focus and zoom factors. Such adversarial alteration of physical configuration could also be invoked through cyber security attacks against the camera's software vulnerabilities to administratively change the camera's physical configuration settings. When such Cyber Physical attacks occur, they affect the integrity of the targeted cameras that would in turn render these cameras ineffective in fulfilling the intended security functions. There is a significant measure of research work in detection mechanisms of cyber-attacks against these Cyber Physical devices, however it is understudied area with such mechanisms against integrity attacks on physical configuration. This research proposes the use of the novel use of deep learning algorithms to detect such physical attacks originating from cyber or physical spaces. Additionally, we proposed the novel use of deep learning-based video frame interpolation for such detection that has comparatively better performance to other anomaly detectors in spatiotemporal environments.

2019-03-22
Teoh, T. T., Chiew, G., Franco, E. J., Ng, P. C., Benjamin, M. P., Goh, Y. J..  2018.  Anomaly Detection in Cyber Security Attacks on Networks Using MLP Deep Learning. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-5.

Malicious traffic has garnered more attention in recent years, owing to the rapid growth of information technology in today's world. In 2007 alone, an estimated loss of 13 billion dollars was made from malware attacks. Malware data in today's context is massive. To understand such information using primitive methods would be a tedious task. In this publication we demonstrate some of the most advanced deep learning techniques available, multilayer perceptron (MLP) and J48 (also known as C4.5 or ID3) on our selected dataset, Advanced Security Network Metrics & Non-Payload-Based Obfuscations (ASNM-NPBO) to show that the answer to managing cyber security threats lie in the fore-mentioned methodologies.

2018-03-26
Aslan, Ö, Samet, R..  2017.  Mitigating Cyber Security Attacks by Being Aware of Vulnerabilities and Bugs. 2017 International Conference on Cyberworlds (CW). :222–225.

Because the Internet makes human lives easier, many devices are connected to the Internet daily. The private data of individuals and large companies, including health-related data, user bank accounts, and military and manufacturing data, are increasingly accessible via the Internet. Because almost all data is now accessible through the Internet, protecting these valuable assets has become a major concern. The goal of cyber security is to protect such assets from unauthorized use. Attackers use automated tools and manual techniques to penetrate systems by exploiting existing vulnerabilities and software bugs. To provide good enough security; attack methodologies, vulnerability concepts and defence strategies should be thoroughly investigated. The main purpose of this study is to show that the patches released for existing vulnerabilities at the operating system (OS) level and in software programs does not completely prevent cyber-attack. Instead, producing specific patches for each company and fixing software bugs by being aware of the software running on each specific system can provide a better result. This study also demonstrates that firewalls, antivirus software, Windows Defender and other prevention techniques are not sufficient to prevent attacks. Instead, this study examines different aspects of penetration testing to determine vulnerable applications and hosts using the Nmap and Metasploit frameworks. For a test case, a virtualized system is used that includes different versions of Windows and Linux OS.