Visible to the public Biblio

Filters: Keyword is malware spread  [Clear All Filters]
2021-03-09
Memos, V. A., Psannis, K. E..  2020.  AI-Powered Honeypots for Enhanced IoT Botnet Detection. 2020 3rd World Symposium on Communication Engineering (WSCE). :64—68.

Internet of Things (IoT) is a revolutionary expandable network which has brought many advantages, improving the Quality of Life (QoL) of individuals. However, IoT carries dangers, due to the fact that hackers have the ability to find security gaps in users' IoT devices, which are not still secure enough and hence, intrude into them for malicious activities. As a result, they can control many connected devices in an IoT network, turning IoT into Botnet of Things (BoT). In a botnet, hackers can launch several types of attacks, such as the well known attacks of Distributed Denial of Service (DDoS) and Man in the Middle (MitM), and/or spread various types of malicious software (malware) to the compromised devices of the IoT network. In this paper, we propose a novel hybrid Artificial Intelligence (AI)-powered honeynet for enhanced IoT botnet detection rate with the use of Cloud Computing (CC). This upcoming security mechanism makes use of Machine Learning (ML) techniques like the Logistic Regression (LR) in order to predict potential botnet existence. It can also be adopted by other conventional security architectures in order to intercept hackers the creation of large botnets for malicious actions.

2020-02-17
Biswal, Satya Ranjan, Swain, Santosh Kumar.  2019.  Model for Study of Malware Propagation Dynamics in Wireless Sensor Network. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :647–653.
Wireless Sensor Network (WSN) faces critical security challenges due to malware(worm, virus, malicious code etc.) attack. When a single node gets compromised by malware then start to spread in entire sensor network through neighboring sensor nodes. To understand the dynamics of malware propagation in WSN proposed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model. This model used the concept of epidemiology. The model focused on early detection of malicious signals presence in the network and accordingly application of security mechanism for its removal. The early detection method helps in controlling of malware spread and reduce battery consumption of sensor nodes. In this paper study the dynamics of malware propagation and stability analysis of the system. In epidemiology basic reproduction number is a crucial parameter which is used for the determination of malware status in the system. The expression of basic reproduction number has been obtained. Analyze the propagation dynamics and compared with previous model. The proposed model provides improved security mechanism in comparison to previous one. The extensive simulation results conform the analytical investigation and accuracy of proposed model.
2019-01-31
Mahboubi, A., Camtepe, S., Morarji, H..  2018.  Reducing USB Attack Surface: A Lightweight Authentication and Delegation Protocol. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1–7.

A privately owned smart device connected to a corporate network using a USB connection creates a potential channel for malware infection and its subsequent spread. For example, air-gapped (a.k.a. isolated) systems are considered to be the most secure and safest places for storing critical datasets. However, unlike network communications, USB connection streams have no authentication and filtering. Consequently, intentional or unintentional piggybacking of a malware infected USB storage or a mobile device through the air-gap is sufficient to spread infection into such systems. Our findings show that the contact rate has an exceptional impact on malware spread and destabilizing free malware equilibrium. This work proposes a USB authentication and delegation protocol based on radiofrequency identification (RFID) in order to stabilize the free malware equilibrium in air-gapped networks. The proposed protocol is modelled using Coloured Petri nets (CPN) and the model is verified and validated through CPN tools.

2018-03-26
Thompson, Brian, Harang, Richard.  2017.  Identifying Key Cyber-Physical Terrain. Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics. :23–28.

The high mobility of Army tactical networks, combined with their close proximity to hostile actors, elevates the risks associated with short-range network attacks. The connectivity model for such short range connections under active operations is extremely fluid, and highly dependent upon the physical space within which the element is operating, as well as the patterns of movement within that space. To handle these dependencies, we introduce the notion of "key cyber-physical terrain": locations within an area of operations that allow for effective control over the spread of proximity-dependent malware in a mobile tactical network, even as the elements of that network are in constant motion with an unpredictable pattern of node-to-node connectivity. We provide an analysis of movement models and approximation strategies for finding such critical nodes, and demonstrate via simulation that we can identify such key cyber-physical terrain quickly and effectively.