Visible to the public Biblio

Filters: Keyword is Keyboards  [Clear All Filters]
2017-03-08
Huang, J., Hou, D., Schuckers, S., Hou, Z..  2015.  Effect of data size on performance of free-text keystroke authentication. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–7.

Free-text keystroke authentication has been demonstrated to be a promising behavioral biometric. But unlike physiological traits such as fingerprints, in free-text keystroke authentication, there is no natural way to identify what makes a sample. It remains an open problem as to how much keystroke data are necessary for achieving acceptable authentication performance. Using public datasets and two existing algorithms, we conduct two experiments to investigate the effect of the reference profile size and test sample size on False Alarm Rate (FAR) and Imposter Pass Rate (IPR). We find that (1) larger reference profiles will drive down both IPR and FAR values, provided that the test samples are large enough, and (2) larger test samples have no obvious effect on IPR, regardless of the reference profile size. We discuss the practical implication of our findings.

Antal, M., Szabó, L. Z..  2015.  An Evaluation of One-Class and Two-Class Classification Algorithms for Keystroke Dynamics Authentication on Mobile Devices. 2015 20th International Conference on Control Systems and Computer Science. :343–350.

In this paper we study keystroke dynamics as an authentication mechanism for touch screen based devices. The authentication process decides whether the identity of a given person is accepted or rejected. This can be easily implemented by using a two-class classifier which operates with the help of positive samples (belonging to the authentic person) and negative ones. However, collecting negative samples is not always a viable option. In such cases a one-class classification algorithm can be used to characterize the target class and distinguish it from the outliers. We implemented an authentication test-framework that is capable of working with both one-class and two-class classification algorithms. The framework was evaluated on our dataset containing keystroke samples from 42 users, collected from touch screen-based Android devices. Experimental results yield an Equal Error Rate (EER) of 3% (two-class) and 7% (one-class) respectively.

Mali, Y. K., Mohanpurkar, A..  2015.  Advanced pin entry method by resisting shoulder surfing attacks. 2015 International Conference on Information Processing (ICIP). :37–42.

The individual distinguishing proof number or (PIN) and Passwords are the remarkable well known verification strategy used in different gadgets, for example, Atms, cell phones, and electronic gateway locks. Unfortunately, the traditional PIN-entrance technique is helpless vulnerable against shoulder-surfing attacks. However, the security examinations used to support these proposed system are not focused around only quantitative investigation, but instead on the results of experiments and testing performed on proposed system. We propose a new theoretical and experimental technique for quantitative security investigation of PIN-entry method. In this paper we first introduce new security idea know as Grid Based Authentication System and rules for secure PIN-entry method by examining the current routines under the new structure. Thus by consider the existing systems guidelines; we try to develop a new PIN-entry method that definitely avoids human shoulder-surfing attacks by significantly increasing the amount of calculations complexity that required for an attacker to penetrate through the secure system.

Roth, J., Liu, X., Ross, A., Metaxas, D..  2015.  Investigating the Discriminative Power of Keystroke Sound. IEEE Transactions on Information Forensics and Security. 10:333–345.
The goal of this paper is to determine whether keystroke sound can be used to recognize a user. In this regard, we analyze the discriminative power of keystroke sound in the context of a continuous user authentication application. Motivated by the concept of digraphs used in modeling keystroke dynamics, a virtual alphabet is first learned from keystroke sound segments. Next, the digraph latency within the pairs of virtual letters, along with other statistical features, is used to generate match scores. The resultant scores are indicative of the similarities between two sound streams, and are fused to make a final authentication decision. Experiments on both static text-based and free text-based authentications on a database of 50 subjects demonstrate the potential as well as the limitations of keystroke sound.
2015-04-30
El Masri, A., Wechsler, H., Likarish, P., Kang, B.B..  2014.  Identifying users with application-specific command streams. Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on. :232-238.

This paper proposes and describes an active authentication model based on user profiles built from user-issued commands when interacting with GUI-based application. Previous behavioral models derived from user issued commands were limited to analyzing the user's interaction with the *Nix (Linux or Unix) command shell program. Human-computer interaction (HCI) research has explored the idea of building users profiles based on their behavioral patterns when interacting with such graphical interfaces. It did so by analyzing the user's keystroke and/or mouse dynamics. However, none had explored the idea of creating profiles by capturing users' usage characteristics when interacting with a specific application beyond how a user strikes the keyboard or moves the mouse across the screen. We obtain and utilize a dataset of user command streams collected from working with Microsoft (MS) Word to serve as a test bed. User profiles are first built using MS Word commands and identification takes place using machine learning algorithms. Best performance in terms of both accuracy and Area under the Curve (AUC) for Receiver Operating Characteristic (ROC) curve is reported using Random Forests (RF) and AdaBoost with random forests.