Visible to the public Biblio

Filters: Keyword is semantic reasoning  [Clear All Filters]
2020-10-05
Wu, Songyang, Zhang, Yong, Chen, Xiao.  2018.  Security Assessment of Dynamic Networks with an Approach of Integrating Semantic Reasoning and Attack Graphs. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1166–1174.
Because of the high-value data of an enterprise, sophisticated cyber-attacks targeted at enterprise networks have become prominent. Attack graphs are useful tools that facilitate a scalable security analysis of enterprise networks. However, the administrators face difficulties in effectively modelling security problems and making right decisions when constructing attack graphs as their risk assessment experience is often limited. In this paper, we propose an innovative method of security assessment through an ontology- and graph-based approach. An ontology is designed to represent security knowledge such as assets, vulnerabilities, attacks, countermeasures, and relationships between them in a common vocabulary. An efficient algorithm is proposed to generate an attack graph based on the inference ability of the security ontology. The proposed algorithm is evaluated with different sizes and topologies of test networks; the results show that our proposed algorithm facilitates a scalable security analysis of enterprise networks.
2020-01-21
Liu, Yi, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Chen, Hao.  2019.  SCTD: Smart Reasoning Based Content Threat Defense in Semantics Knowledge Enhanced ICN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Information-centric networking (ICN) is a novel networking architecture with subscription-based naming mechanism and efficient caching, which has abundant semantic features. However, existing defense studies in ICN fails to isolate or block efficiently novel content threats including malicious penetration and semantic obfuscation for the lack of researches considering ICN semantic features. More importantly, to detect potential threats, existing security works in ICN fail to use semantic reasoning to construct security knowledge-based defense mechanism. Thus ICN needs a smart and content-based defense mechanism. Current works are not able to block content threats implicated in semantics. Additionally, based on traditional computing resources, they are incompatible with ICN protocols. In this paper, we propose smart reasoning based content threat defense for semantics knowledge enhanced ICN. A fog computing based defense mechanism with content semantic awareness is designed to build ICN edge defense system. In addition, smart reasoning algorithms is proposed to detect implicit knowledge and semantic relations in packet names and contents with context communication content and knowledge graph. On top of inference knowledge, the mechanism can perceive threats from ICN interests. Simulations demonstrate the validity and efficiency of the proposed mechanism.
2018-04-30
Kafali, Ö, Jones, J., Petruso, M., Williams, L., Singh, M. P..  2017.  How Good Is a Security Policy against Real Breaches? A HIPAA Case Study 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). :530–540.

Policy design is an important part of software development. As security breaches increase in variety, designing a security policy that addresses all potential breaches becomes a nontrivial task. A complete security policy would specify rules to prevent breaches. Systematically determining which, if any, policy clause has been violated by a reported breach is a means for identifying gaps in a policy. Our research goal is to help analysts measure the gaps between security policies and reported breaches by developing a systematic process based on semantic reasoning. We propose SEMAVER, a framework for determining coverage of breaches by policies via comparison of individual policy clauses and breach descriptions. We represent a security policy as a set of norms. Norms (commitments, authorizations, and prohibitions) describe expected behaviors of users, and formalize who is accountable to whom and for what. A breach corresponds to a norm violation. We develop a semantic similarity metric for pairwise comparison between the norm that represents a policy clause and the norm that has been violated by a reported breach. We use the US Health Insurance Portability and Accountability Act (HIPAA) as a case study. Our investigation of a subset of the breaches reported by the US Department of Health and Human Services (HHS) reveals the gaps between HIPAA and reported breaches, leading to a coverage of 65%. Additionally, our classification of the 1,577 HHS breaches shows that 44% of the breaches are accidental misuses and 56% are malicious misuses. We find that HIPAA's gaps regarding accidental misuses are significantly larger than its gaps regarding malicious misuses.

2018-03-26
Pallaprolu, S. C., Sankineni, R., Thevar, M., Karabatis, G., Wang, J..  2017.  Zero-Day Attack Identification in Streaming Data Using Semantics and Spark. 2017 IEEE International Congress on Big Data (BigData Congress). :121–128.

Intrusion Detection Systems (IDS) have been in existence for many years now, but they fall short in efficiently detecting zero-day attacks. This paper presents an organic combination of Semantic Link Networks (SLN) and dynamic semantic graph generation for the on the fly discovery of zero-day attacks using the Spark Streaming platform for parallel detection. In addition, a minimum redundancy maximum relevance (MRMR) feature selection algorithm is deployed to determine the most discriminating features of the dataset. Compared to previous studies on zero-day attack identification, the described method yields better results due to the semantic learning and reasoning on top of the training data and due to the use of collaborative classification methods. We also verified the scalability of our method in a distributed environment.