Visible to the public Biblio

Filters: Keyword is classification problem  [Clear All Filters]
2018-04-02
Wang, Y., Pulgar-Painemal, H., Sun, K..  2017.  Online Analysis of Voltage Security in a Microgrid Using Convolutional Neural Networks. 2017 IEEE Power Energy Society General Meeting. :1–5.

Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.