Biblio
Gaussian random attacks that jointly minimize the amount of information obtained by the operator from the grid and the probability of attack detection are presented. The construction of the attack is posed as an optimization problem with a utility function that captures two effects: firstly, minimizing the mutual information between the measurements and the state variables; secondly, minimizing the probability of attack detection via the Kullback-Leibler (KL) divergence between the distribution of the measurements with an attack and the distribution of the measurements without an attack. Additionally, a lower bound on the utility function achieved by the attacks constructed with imperfect knowledge of the second order statistics of the state variables is obtained. The performance of the attack construction using the sample covariance matrix of the state variables is numerically evaluated. The above results are tested in the IEEE 30-Bus test system.
Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.
Traditional deception-based cyber defenses often undertake reactive strategies that utilize decoy systems or services for attack detection and information gathering. Unfortunately, the effectiveness of these defense mechanisms has been largely constrained by the low decoy fidelity, the poor scalability of decoy platform, and the static decoy configurations, which allow the attackers to identify and bypass the deployed decoys. In this paper, we develop a decoy-enhanced defense framework that can proactively protect critical servers against targeted remote attacks through deception. To achieve both high fidelity and good scalability, our system follows a hybrid architecture that separates lightweight yet versatile front-end proxies from back-end high-fidelity decoy servers. Moreover, our system can further invalidate the attackers' reconnaissance through dynamic proxy address shuffling. To guarantee service availability, we develop a transparent connection translation strategy to maintain existing connections during shuffling. Our evaluation on a prototype implementation demonstrates the effectiveness of our approach in defeating attacker reconnaissance and shows that it only introduces small performance overhead.