Visible to the public Biblio

Filters: Keyword is hybrid attack graph  [Clear All Filters]
2021-01-28
Bhattacharya, A., Ramachandran, T., Banik, S., Dowling, C. P., Bopardikar, S. D..  2020.  Automated Adversary Emulation for Cyber-Physical Systems via Reinforcement Learning. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system’s resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.

2019-02-08
Nichols, W., Hawrylak, P. J., Hale, J., Papa, M..  2018.  Methodology to Estimate Attack Graph System State from a Simulation of a Nuclear Research Reactor. 2018 Resilience Week (RWS). :84-87.
Hybrid attack graphs are a powerful tool when analyzing the cybersecurity of a cyber-physical system. However, it is important to ensure that this tool correctly models reality, particularly when modelling safety-critical applications, such as a nuclear reactor. By automatically verifying that a simulation reaches the state predicted by an attack graph by analyzing the final state of the simulation, this verification procedure can be accomplished. As such, a mechanism to estimate if a simulation reaches the expected state in a hybrid attack graph is proposed here for the nuclear reactor domain.
2018-04-02
Hill, Z., Nichols, W. M., Papa, M., Hale, J. C., Hawrylak, P. J..  2017.  Verifying Attack Graphs through Simulation. 2017 Resilience Week (RWS). :64–67.

Verifying attacks against cyber physical systems can be a costly and time-consuming process. By using a simulated environment, attacks can be verified quickly and accurately. By combining the simulation of a cyber physical system with a hybrid attack graph, the effects of a series of exploits can be accurately analysed. Furthermore, the use of a simulated environment to verify attacks may uncover new information about the nature of the attacks.