Visible to the public Biblio

Filters: Keyword is network attack graph  [Clear All Filters]
2022-01-10
Guan, Xiaojuan, Ma, Yuanyuan, SHAO, Zhipeng, Cao, Wantian.  2021.  Research on Key Node Method of Network Attack Graph Based on Power Information Physical System. 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC)2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC). :48–51.
With the increasing scale of network, the scale of attack graph has been becoming larger and larger, and the number of nodes in attack graph is also increasing, which can not directly reflect the impact of nodes on the whole system. Therefore, in this paper, a method was proposed to determine the key nodes of network attack graph of power information physical system to solve the problem of uncertain emphasis of security protection of attack graph.
2021-01-25
Hu, W., Zhang, L., Liu, X., Huang, Y., Zhang, M., Xing, L..  2020.  Research on Automatic Generation and Analysis Technology of Network Attack Graph. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :133–139.
In view of the problem that the overall security of the network is difficult to evaluate quantitatively, we propose the edge authority attack graph model, which aims to make up for the traditional dependence attack graph to describe the relationship between vulnerability behaviors. This paper proposed a network security metrics based on probability, and proposes a network vulnerability algorithm based on vulnerability exploit probability and attack target asset value. Finally, a network security reinforcement algorithm with network vulnerability index as the optimization target is proposed based on this metric algorithm.
2019-12-17
Li, Ming, Hawrylak, Peter, Hale, John.  2019.  Concurrency Strategies for Attack Graph Generation. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :174-179.

The network attack graph is a powerful tool for analyzing network security, but the generation of a large-scale graph is non-trivial. The main challenge is from the explosion of network state space, which greatly increases time and storage costs. In this paper, three parallel algorithms are proposed to generate scalable attack graphs. An OpenMP-based programming implementation is used to test their performance. Compared with the serial algorithm, the best performance from the proposed algorithms provides a 10X speedup.

2018-04-02
Guan, X., Ma, Y., Hua, Y..  2017.  An Attack Intention Recognition Method Based on Evaluation Index System of Electric Power Information System. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1544–1548.

With the increasing scale of the network, the power information system has many characteristics, such as large number of nodes, complicated structure, diverse network protocols and abundant data, which make the network intrusion detection system difficult to detect real alarms. The current security technologies cannot meet the actual power system network security operation and protection requirements. Based on the attacker ability, the vulnerability information and the existing security protection configuration, we construct the attack sub-graphs by using the parallel distributed computing method and combine them into the whole network attack graph. The vulnerability exploit degree, attacker knowledge, attack proficiency, attacker willingness and the confidence level of the attack evidence are used to construct the security evaluation index system of the power information network system to calculate the attack probability value of each node of the attack graph. According to the probability of occurrence of each node attack, the pre-order attack path will be formed and then the most likely attack path and attack targets will be got to achieve the identification of attack intent.