Biblio
Mobile ad-hoc networks (MANETs) are decentralized and self-organizing communication systems. They have become pervasive in the current technological framework. MANETs have become a vital solution to the services that need flexible establishments, dynamic and wireless connections such as military operations, healthcare systems, vehicular networks, mobile conferences, etc. Hence it is more important to estimate the trustworthiness of moving devices. In this research, we have proposed a model to improve a trusted routing in mobile ad-hoc networks by identifying malicious nodes. The proposed system uses Reinforcement Learning (RL) agent that learns to detect malicious nodes. The work focuses on a MANET with Ad-hoc On-demand Distance Vector (AODV) Protocol. Most of the systems were developed with the assumption of a small network with limited number of neighbours. But with the introduction of reinforcement learning concepts this work tries to minimize those limitations. The main objective of the research is to introduce a new model which has the capability to detect malicious nodes that decrease the performance of a MANET significantly. The malicious behaviour is simulated with black holes that move randomly across the network. After identifying the technology stack and concepts of RL, system design was designed and the implementation was carried out. Then tests were performed and defects and further improvements were identified. The research deliverables concluded that the proposed model arranges for highly accurate and reliable trust improvement by detecting malicious nodes in a dynamic MANET environment.
Technological advances in wearable and implanted medical devices are enabling wireless body area networks to alter the current landscape of medical and healthcare applications. These systems have the potential to significantly improve real time patient monitoring, provide accurate diagnosis and deliver faster treatment. In spite of their growth, securing the sensitive medical and patient data relayed in these networks to protect patients' privacy and safety still remains an open challenge. The resource constraints of wireless medical sensors limit the adoption of traditional security measures in this domain. In this work, we propose a distributed mobile agent based intrusion detection system to secure these networks. Specifically, our autonomous mobile agents use machine learning algorithms to perform local and network level anomaly detection to detect various security attacks targeted on healthcare systems. Simulation results show that our system performs efficiently with high detection accuracy and low energy consumption.