Visible to the public Biblio

Filters: Keyword is biomedical communication  [Clear All Filters]
2020-11-17
Nasim, I., Kim, S..  2019.  Human EMF Exposure in Wearable Networks for Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.

Numerous antenna design approaches for wearable applications have been investigated in the literature. As on-body wearable communications become more ingrained in our daily activities, the necessity to investigate the impacts of these networks burgeons as a major requirement. In this study, we investigate the human electromagnetic field (EMF) exposure effect from on-body wearable devices at 2.4 GHz and 60 GHz, and compare the results to illustrate how the technology evolution to higher frequencies from wearable communications can impact our health. Our results suggest the average specific absorption rate (SAR) at 60 GHz can exceed the regulatory guidelines within a certain separation distance between a wearable device and the human skin surface. To the best of authors' knowledge, this is the first work that explicitly compares the human EMF exposure at different operating frequencies for on-body wearable communications, which provides a direct roadmap in design of wearable devices to be deployed in the Internet of Battlefield Things (IoBT).

2020-10-12
Khayat, Mohamad, Barka, Ezedin, Sallabi, Farag.  2019.  SDN\_Based Secure Healthcare Monitoring System(SDN-SHMS). 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–7.
Healthcare experts and researchers have been promoting the need for IoT-based remote health monitoring systems that take care of the health of elderly people. However, such systems may generate large amounts of data, which makes the security and privacy of such data to become imperative. This paper studies the security and privacy concerns of the existing Healthcare Monitoring System (HMS) and proposes a reference architecture (security integration framework) for managing IoT-based healthcare monitoring systems that ensures security, privacy, and reliable service delivery for patients and elderly people to reduce and avoid health related risks. Our proposed framework will be in the form of state-of-the-art Security Platform, for HMS, using the emerging Software Defined Network (SDN) networking paradigm. Our proposed integration framework eliminates the dependency on specific Software or vendor for different security systems, and allows for the benefits from the functional and secure applications, and services provided by the SDN platform.
2020-09-28
Zhang, Shuaipeng, Liu, Hong.  2019.  Environment Aware Privacy-Preserving Authentication with Predictability for Medical Edge Computing. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :90–96.
With the development of IoT, smart health has significantly improved the quality of people's life. A large amount of smart health monitoring system has been proposed, which provides an opportunity for timely and efficient diagnosis. Nevertheless, most of them ignored the impact of environment on patients' health. Due to the openness of the communication channel, data security and privacy preservation are crucial problems to be solved. In this work, an environment aware privacy-preserving authentication protocol based on the fuzzy extractor and elliptic curve cryptography (ecc) is designed for health monitoring system with mutual authentication and anonymity. Edge computing unit can authenticate all environmental sensors at one time. Fuzzy synthetic evaluation model is utilized to evaluate the environment equality with the patients' temporal health index (THI) as an assessment factor, which can help to predict the appropriate environment. The session key is established for secure communication based on the predicted result. Through security analysis, the proposed protocol can prevent common attacks. Moreover, performance analysis shows that the proposed protocol is applicable for resource-limited smart devices in edge computing health monitoring system.
2020-07-24
Tan, Syh-Yuan, Yeow, Kin-Woon, Hwang, Seong Oun.  2019.  Enhancement of a Lightweight Attribute-Based Encryption Scheme for the Internet of Things. IEEE Internet of Things Journal. 6:6384—6395.

In this paper, we present the enhancement of a lightweight key-policy attribute-based encryption (KP-ABE) scheme designed for the Internet of Things (IoT). The KP-ABE scheme was claimed to achieve ciphertext indistinguishability under chosen-plaintext attack in the selective-set model but we show that the KP-ABE scheme is insecure even in the weaker security notion, namely, one-way encryption under the same attack and model. In particular, we show that an attacker can decrypt a ciphertext which does not satisfy the policy imposed on his decryption key. Subsequently, we propose an efficient fix to the KP-ABE scheme as well as extending it to be a hierarchical KP-ABE (H-KP-ABE) scheme that can support role delegation in IoT applications. An example of applying our H-KP-ABE on an IoT-connected healthcare system is given to highlight the benefit of the delegation feature. Lastly, using the NIST curves secp192k1 and secp256k1, we benchmark the fixed (hierarchical) KP-ABE scheme on an Android phone and the result shows that the scheme is still the fastest in the literature.

2018-04-02
Long, W. J., Lin, W..  2017.  An Authentication Protocol for Wearable Medical Devices. 2017 13th International Conference and Expo on Emerging Technologies for a Smarter World (CEWIT). :1–5.

Wearable medical devices are playing more and more important roles in healthcare. Unlike the wired connection, the wireless connection between wearable devices and the remote servers are exceptionally vulnerable to malicious attacks, and poses threats to the safety and privacy of the patient health data. Therefore, wearable medical devices require the implementation of reliable measures to secure the wireless network communication. However, those devices usually have limited computational power that is not comparable with the desktop computer and thus, it is difficult to adopt the full-fledged security algorithm in software. In this study, we have developed an efficient authentication and encryption protocol for internetconnected wearable devices using the recognized standards of AES and SHA that can provide two-way authentication between wearable device and remote server and protection of patient privacy against various network threats. We have tested the feasibility of this protocol on the TI CC3200 Launchpad, an evaluation board of the CC3200, which is a Wi-Fi capable microcontroller designed for wearable devices and includes a hardware accelerated cryptography module for the implementation of the encryption algorithm. The microcontroller serves as the wearable device client and a Linux computer serves as the server. The embedded client software was written in ANSI C and the server software was written in Python.