Biblio
This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.
Online Dynamic Security Assessment (DSA) is a dynamical system widely used for assessing and analyzing an electrical power system. The outcomes of DSA are used in many aspects of the operation of power system, from monitoring the system to determining remedial action schemes (e.g. the amount of generators to be shed at the event of a fault). Measurement from supervisory control and data acquisition (SCADA) and state estimation (SE) results are the inputs for online-DSA, however, the SE error, caused by sudden change in power flow or low convergence rate, could be unnoticed and skew the outcome. Therefore, generator shedding scheme cannot achieve optimum but must have some margin because we don't know how SE error caused by these problems will impact power system stability control. As a method for solving the problem, we developed SE error detection system (EDS), which is enabled by detecting the SE error that will impact power system transient stability. The method is comparing a threshold value and an index calculated by the difference between SE results and PMU observation data, using the distance from the fault point and the power flow value. Using the index, the reliability of the SE results can be verified. As a result, online-DSA can use the SE results while avoiding the bad SE results, assuring the outcome of the DSA assessment and analysis, such as the amount of generator shedding in order to prevent the power system's instability.
Reliable operation of electrical power systems in the presence of multiple critical N - k contingencies is an important challenge for the system operators. Identifying all the possible N - k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N - k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N - k contingencies. The algorithms are able to capture all the possible critical N - k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.
The smart grid is an electrical grid that has a duplex communication. This communication is between the utility and the consumer. Digital system, automation system, computers and control are the various systems of Smart Grid. It finds applications in a wide variety of systems. Some of its applications have been designed to reduce the risk of power system blackout. Dynamic vulnerability assessment is done to identify, quantify, and prioritize the vulnerabilities in a system. This paper presents a novel approach for classifying the data into one of the two classes called vulnerable or non-vulnerable by carrying out Dynamic Vulnerability Assessment (DVA) based on some data mining techniques such as Multichannel Singular Spectrum Analysis (MSSA), and Principal Component Analysis (PCA), and a machine learning tool such as Support Vector Machine Classifier (SVM-C) with learning algorithms that can analyze data. The developed methodology is tested in the IEEE 57 bus, where the cause of vulnerability is transient instability. The results show that data mining tools can effectively analyze the patterns of the electric signals, and SVM-C can use those patterns for analyzing the system data as vulnerable or non-vulnerable and determines System Vulnerability Status.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
In interconnected power systems, dynamic model reduction can be applied to generators outside the area of interest (i.e., study area) to reduce the computational cost associated with transient stability studies. This paper presents a method of deriving the reduced dynamic model of the external area based on dynamic response measurements. The method consists of three steps, namely dynamic-feature extraction, attribution, and reconstruction (DEAR). In this method, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal “basis” of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original system. The network model is unchanged in the DEAR method. Tests on several IEEE standard systems show that the proposed method yields better reduction ratio and response errors than the traditional coherency based reduction methods.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
In this paper, parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using Message Passing Interface (MPI) based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the Input/Output (I/O) bottleneck are explored, and findings indicate that architecting a machine with a larger local disk and maintaining a local file system significantly improve the scaling results. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library.